Morphological Similarities between DBM and an Economic Geography Model of City Growth

  • Jean Cavailhès
  • Pierre Frankhauser
  • Geoffrey Caruso
  • Dominique Peesters
  • Isabelle Thomas
  • Gilles Vuidel
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 4)

Abstract

An urban microeconomic model of households evolving in a 2D cellular automata allows to simulate the growth of a metropolitan area where land is devoted to housing, road network and agricultural/green areas. This system is self-organised: based on individualistic decisions of economic agents who compete on the land market, the model generates a metropolitan area with houses, roads, and agriculture. Several simulation are performed. The results show strong similarities with physical Dieletric breackdown models (DBM). In particular, phase transitions in the urban morphology occur when a control parameter reaches critical values. Population density in our model and the electric potential in DBM play similar roles, which can explain these resemblances.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersson, C., Lindgren, K., Rasmunssen, S., White, R.: Urban growth simulation from first principles. Physical Review E 66, 026204-1 -9 (2002)CrossRefGoogle Scholar
  2. 2.
    Batty, M., Longley, P.: The fractal simulation of urban structure. Environment and Planning A 18, 1143–1179 (1986)CrossRefGoogle Scholar
  3. 3.
    Batty, M.: Generating urban forms from diffusive growth. Environment and Planning A 23, 511–544 (1991)CrossRefGoogle Scholar
  4. 4.
    Benguigui, L.: A new aggregation model. Application to town growth. Physica A 219, 13–26 (1995)Google Scholar
  5. 5.
    Benguigui, L.: A fractal analysis of the public transportation system of Paris. Environment and Planning A 27(7), 1147–1161 (1995)CrossRefGoogle Scholar
  6. 6.
    Benguigui, L.: Aggregation models for town growth. Philosophical Magazine B 77, 1269–1275 (1998)CrossRefGoogle Scholar
  7. 7.
    Benguigui, L., Czamanski, D., Marinov, M.: City Growth as a Leap-frogging Process: An Application to the Tel-Aviv Metropolis. Urban Studies 38, 1819–1839 (2001)CrossRefGoogle Scholar
  8. 8.
    Bogoyavlenskiy, V.A., Chernova, N.A.: Diffusion-limited aggregation: A relationship between surface thermodynamics and crystal morphology. Physical Review E 61(2), 1629–1633 (2000)CrossRefGoogle Scholar
  9. 9.
    Caruso, G., Peeters, D., Cavailhès, J., Rounsevell, M.: Spatial configurations and cellular dynamics in a periurban city. Regional Science and Urban Economics 37, 542–567 (2007)CrossRefGoogle Scholar
  10. 10.
    Cavailhès, J., Frankhauser, P., Peeters, D., Thomas, I.: Where Alonso meets Sierpinski: an urban economic model of fractal metropolitan area. Environment and Planning A 36, 1471–1498 (2004)CrossRefGoogle Scholar
  11. 11.
    Chikushi, J., Hirota, O.: Simulation of root development based on the dielectric breakdown model. Hydrological Sciences 43(4), 549–559 (1998)CrossRefGoogle Scholar
  12. 12.
    Couclelis, H.: Cellular worlds: a framework for modelling micro-macro dynamics. Environment and Planning A 17, 585–596 (1985)CrossRefGoogle Scholar
  13. 13.
    Frankhauser, P.: Aspects fractals de structures urbaines. Espace géographique 1, 45–69 (1991)Google Scholar
  14. 14.
    Li, B., Wang, J., Wang, B., Liu, W., Wu, Z.: Computer simulations of bacterial-colony formation. Europhysics Letters 30, 239–243 (1995)CrossRefGoogle Scholar
  15. 15.
    Lu, Y., Tang, J.: Fractal dimension of a transportation network and its relationship with urban growth: a study of the Dallas - Fort Worth area. Environment and Planning B 31(6), 895–911 (2004)CrossRefGoogle Scholar
  16. 16.
    Makse, H.A., Andrade, J.S., Batty, M., Havlin, S., Stanley, H.E.: Modeling urban growth patterns with correlated percolation. Physical Review E 58, 7054–7062Google Scholar
  17. 17.
    Makse, H.A., Havlin, S., Stanley, H.E.: Modelling Urban Growth Patterns. Nature 377, 608–612 (1995)CrossRefGoogle Scholar
  18. 18.
    Mathiesen, J., Jensen, M.H., Bakke, J.O.H.: Dimensions, maximal growth sites, and optimization in the dielectric breakdown model. Phys. Rev. E 77, 066203 (2008)CrossRefGoogle Scholar
  19. 19.
    Niemeyer, L., Pietronero, L., Wiesmann, H.J.: Fractal Dimension of Dielectric Breakdown. Phys. Rev. Lett. 52, 1033–1036 (1984)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Peruani, F., Solovey, G., Irurzuni, I.M., Mola, E.E., Marzocca, A., Vicente, J.L.: Dielectric breakdown model for composite materials. Phys. Rev. E 67, 066121 (2003)CrossRefGoogle Scholar
  21. 21.
    Phipps, M.: Dynamical behavior of cellular automata under the constraint of neighborhood coherence. Geographical Analysis 21(3), 197–216 (1989)CrossRefGoogle Scholar
  22. 22.
    Pietronero, L., Wissman, H.J.: Stochastic Model for Dielectric Breakdown. Journal of Statistical Physics 36(5,6), 909–916 (1984)CrossRefGoogle Scholar
  23. 23.
    Sánchez, A., Guinea, F., Sander, L.M., Hakim, V., Louis, E.: Growth and forms of Laplacian aggregates. Phys. Rev. E 48, 1296–1304 (1993)CrossRefGoogle Scholar
  24. 24.
    Schelling, T.C.: Dynamic Models of Segregation. Journal of Mathematical Sociology 1, 143–186 (1971)CrossRefGoogle Scholar
  25. 25.
    White, R., Engelen, G.: Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land use patterns. Environment and Planning A 25, 1175–1199 (1993)CrossRefGoogle Scholar
  26. 26.
    White, R., Engelen, G.: Cellular dynamics and GIS: modelling spatial complexity. Geographical Systems 1, 237–253 (1994)Google Scholar
  27. 27.
    Witten, T.A., Sander, L.M.: Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon. Phys. Rev. Lett. 47(19), 1400–1403 (1981)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Jean Cavailhès
    • 1
  • Pierre Frankhauser
    • 2
  • Geoffrey Caruso
    • 3
  • Dominique Peesters
    • 4
  • Isabelle Thomas
    • 5
  • Gilles Vuidel
    • 6
  1. 1.Research Director, INRA, UMR 1041, CESAER, DijonFrance
  2. 2.Professor, CNRS, ThéMAUniversity of Franche-ComtéBesançonFrance
  3. 3.Professor, University of LuxembourgLuxembourg
  4. 4.Professor, Geography and CORECatholic University of LouvainBelgium
  5. 5.Research Director, FNRS, Geography and CORECatholic University of LouvainBelgium
  6. 6.Software engineer, CNRSThéMA, University of Franche-ComtéBesançonFrance

Personalised recommendations