Particle Competition in Complex Networks for Semi-supervised Classification

  • Fabricio Breve
  • Liang Zhao
  • Marcos Quiles
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 4)


Semi-supervised learning is an important topic in machine learning. In this paper, a network-based semi-supervised classification method is proposed. Class labels are propagated by combined random-deterministic walking of particles and competition among them. Different from other graph-based methods, our model does not rely on loss function or regularizer. Computer simulations were performed with synthetic and real data, which show that the proposed method can classify arbitrarily distributed data, including linear non-separable data. Moreover, it is much faster due to lower order of complexity and it can achieve better results with few pre-labeled data than other graph based methods.


semi-supervised learning particle competition complex networks community detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Newman, M.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dorogovtsev, S., Mendes, F.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bornholdt, S., Schuster, H.: Handbook of Graphs and Networks: From the Genome to the Internet. Wiley-VCH, Chichester (2006)zbMATHGoogle Scholar
  4. 4.
    Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69, 026113 (2004)CrossRefGoogle Scholar
  5. 5.
    Newman, M.: Modularity and community structure in networks. Proceedings of the National Academy of Science of the United States of America 103, 8577–8582 (2006)CrossRefGoogle Scholar
  6. 6.
    Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Physical Review E 72, 027104 (2005)CrossRefGoogle Scholar
  7. 7.
    Reichardt, J., Bornholdt, S.: Detecting Fuzzy Community Structures in Complex Networks with a Potts Model. Physical Review Letters 93(21), 218701 (2004)CrossRefGoogle Scholar
  8. 8.
    Danon, L., Díaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. Journal of Statistical Mechanics: Theory and Experiment 9, P09008 (2005)CrossRefGoogle Scholar
  9. 9.
    Quiles, M., Zhao, L., Alonso, R., Romero, R.: Particle competition for complex network community detection. Chaos 18, 033107 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  11. 11.
    Zhu, X.: Semi-Supervised Learning Literature Survey. Technical Report, Computer Sciences, University of Wisconsin-Madison (2005)Google Scholar
  12. 12.
    Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press, Cambridge (2006)CrossRefGoogle Scholar
  13. 13.
    Nigam, K., McCallum, A., Thrun, S., Mitchell, T.: Text classification from labeled and unlabeled documents using EM. Machine Learning 39, 103–134 (2000)CrossRefzbMATHGoogle Scholar
  14. 14.
    Fujino, A., Ueda, N., Saito, K.: A hybrid generative/discriminative approach to semi-supervised classifier design. In: AAAI 2005, Proceedings of the Twentieth National Conference on Artificial Intelligence, pp. 764–769 (2005)Google Scholar
  15. 15.
    Demiriz, A., Bennet, K., Embrechts, M.: Semi-supervised clustering using genetic algorithms. In: Proceedings of Artificial Neural Networks in Engineering, pp. 809–814. ASME Press (1999)Google Scholar
  16. 16.
    Dara, R., Kremer, S., Stacey, D.: Clustering unlabeled data with SOMs improves classification of labeled real-world data. In: Proceedings of the World Congress on Computational Intelligence (WCCI), pp. 2237–2242 (2002)Google Scholar
  17. 17.
    Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: COLT: Proceedings of the Workshop on Computational Learning Theory, pp. 92–100 (1998)Google Scholar
  18. 18.
    Mitchell, T.: The role of unlabeled data in supervised learning. In: Proceedings of the Sixth International Colloquium on Cognitive Science (1999)Google Scholar
  19. 19.
    Vapnik, V.: Statistical Learning Theory. Wiley, New York (2008)zbMATHGoogle Scholar
  20. 20.
    Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of the Twentieth International Conference on Machine Learning, pp. 912–919. Morgan Kaufmann, San Francisco (2003)Google Scholar
  21. 21.
    Zhou, D., Bousquet, O., Lal, T., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: Advances in Neural Information Processing Systems, vol. 16, pp. 321–328. MIT Press, Cambdridge (2004)Google Scholar
  22. 22.
    Blum, A., Chawla, S.: Learning from labeled and unlabeled data using graph mincuts. In: Proceedings of the Eighteenth International Conference on Machine Learning, pp. 19–26. Morgan Kaufmann, San Francisco (2001)Google Scholar
  23. 23.
    Belkin, M., Matveeva, I., Niyogi, P.: Regularization and semisupervised learning on large graphs. In: Conference on Learning Theory, pp. 624–638. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Belkin, M., Niyogi, P., Sindhwani, V.: On manifold regularization. In: Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (AISTAT 2005), pp. 17–24. Society for Artificial Intelligence and Statistics, New Jersey (2005)Google Scholar
  25. 25.
    Joachims, T.: Transductive learning via spectral graph partitioning. In: Proceedings of International Conference on Machine Learning 2003, pp. 290–297. AAAI Press, Menlo Park (2003)Google Scholar
  26. 26.
    Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, vol. 14, pp. 849–856. MIT Press, Cambridge (2001)Google Scholar
  27. 27.
    Asuncion, A., Newman, D.: UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences (2007),
  28. 28.
    PRTools: The Matlab Toolbox for Pattern Recognition,
  29. 29.

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Fabricio Breve
    • 1
  • Liang Zhao
    • 1
  • Marcos Quiles
    • 1
  1. 1.Institute of Mathematics and Computer ScienceUniversity of São PauloSão CarlosBrazil

Personalised recommendations