Classification Based on the Optimal K-Associated Network

  • Alneu A. Lopes
  • João R. BertiniJr.
  • Robson Motta
  • Liang Zhao
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 4)

Abstract

In this paper, we propose a new graph-based classifier which uses a special network, referred to as optimal K-associated network, for modeling data. The K-associated network is capable of representing (dis)similarity relationships among data samples and data classes. Here, we describe the main properties of the K-associated network as well as the classification algorithm based on it. Experimental evaluation indicates that the model based on an optimal K-associated network captures topological structure of the training data leading to good results on the classification task particularly for noisy data.

Keywords

Complex Network Data Mining Data Classification Network formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Watts, D.J., Strogatz, S.H.: Collective Dynamics of ’Small-World’ Networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  2. 2.
    Albert, R., Jeong, H., Barabási, A.-L.: Diameter of the World Wide Web. Nature 401, 130–131 (1999)CrossRefGoogle Scholar
  3. 3.
    Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM Review 45(2), 167–256 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Albert, R., Barabási, A.-L.: Statistical Mechanics of Complex Networks. Review of Modern Physics 74, 47–97 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bornholdt, S., Schuster, H.G.: Handbook of Graphs and Networks: From the Genome to the Internet. Wiley-vch, Weinheim (2003)MATHGoogle Scholar
  6. 6.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)CrossRefMATHGoogle Scholar
  7. 7.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2006)MATHGoogle Scholar
  8. 8.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons, Inc., Chichester (2001)MATHGoogle Scholar
  9. 9.
    Berkhin, P.: Survey of Clustering Data Mining Techniques. Technical report, Accrue Software (2002)Google Scholar
  10. 10.
    Schaeffer, S.E.: Graph Clustering. Computer Science Review 1, 27–34 (2007)CrossRefMATHGoogle Scholar
  11. 11.
    Karypis, G., Han, E.-H., Kumar, V.: Chameleon: Hierarchical Clustering using Dynamic Modeling. IEEE Computer 32(8), 68–75 (1999)CrossRefGoogle Scholar
  12. 12.
    Guha, S., Rastogi, R., Shim, K.: CURE: An Efficient Clustering Algorithm for Large Databases. In: Proc. of 1998 ACM-SIGMOD Int. Conf. on Management of Data, pp. 73–84 (1998)Google Scholar
  13. 13.
    Newman, M.E.J., Girvan, M.: Finding and Evaluating Community Structure in Networks. Physical Review E 69, 026113(1-15) (2004)Google Scholar
  14. 14.
    Danon, L., Duch, J., Arenas, A., Dáz-Guilera, A.: Comparing Community Structure Identification. Journal of Statistical Mechanics: Theory and Experiment, P09008(1-10) (2005)Google Scholar
  15. 15.
    Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking Evolving Communities in Large Networks. Publications of the National Academy of Sciences USA 101(1), 5249–5253 (2004)CrossRefGoogle Scholar
  16. 16.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, Heidelberg (2001)CrossRefMATHGoogle Scholar
  17. 17.
    Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Alneu A. Lopes
    • 1
  • João R. BertiniJr.
    • 1
  • Robson Motta
    • 1
  • Liang Zhao
    • 1
  1. 1.Institute of Mathematics and Computer ScienceUniversity of São PauloSão CarlosBrazil

Personalised recommendations