“Reducing” CLASSIC to Practice: Knowledge Representation Theory Meets Reality

  • Ronald J. Brachman
  • Alex Borgida
  • Deborah L. McGuinness
  • Peter F. Patel-Schneider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5600)

Abstract

Most recent key developments in research on knowledge representation (KR) have been of the more theoretical sort, involving worst-case complexity results, solutions to technical challenge problems, etc. While some of this work has influenced practice in Artificial Intelligence, it is rarely—if ever—made clear what is compromised when the transition is made from relatively abstract theory to the real world. classic is a description logic with an ancestry of extensive theoretical work (tracing back over twenty years to kl-one), and several novel contributions to KR theory. Basic research on classic paved the way for an implementation that has been used significantly in practice, including by users not versed in KR theory. In moving from a pure logic to a practical tool, many compromises and changes of perspective were necessary. We report on this transition and articulate some of the profound influences practice can have on relatively idealistic theoretical work. We have found that classic has been quite useful in practice, yet still strongly retains most of its original spirit, but much of our thinking and many details had to change along the way.

Keywords

Europe Assure Doyle Verse Berman 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aït-Kaci, H.: Type subsumption as a model of computation. In: Kerschberg, L. (ed.) Proceedings of the First International Conference on Expert Database Systems, Kiawah Island, South Carolina, October 1984, pp. 124–150 (1984)Google Scholar
  2. 2.
    Baader, F., Hollunder, B., Nebel, B., Profitlich, H.-J., Franconi, E.: An empirical analysis of optimization techniques for terminological representation systems, or, making KRIS get a move on. In: Nebel, et al. (eds.) [35], pp. 270–281Google Scholar
  3. 3.
    Baader, F., Küsters, R., Borgida, A., McGuinness, D.: Matching in description logics. Journal of Logic and Computation 9(3), 411–447 (1999)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Borgida, A.: Extensible knowledge representation: the case of description reasoners. Journal of Artificial Intelligence Research 10, 399–434 (1999)MathSciNetMATHGoogle Scholar
  5. 5.
    Borgida, A., Brachman, R.J., McGuinness, D.L., Resnick, L.A.: CLASSIC: A structural data model for objects. In: Proceedings of the 1989 ACM SIGMOD International Conference on Mangement of Data, June 1989, pp. 59–67. Association for Computing Machinery, New York (1989)Google Scholar
  6. 6.
    Borgida, A., Küsters, R.: What’s NOT in a name?: Initial explorations of a structural approach to intgerating large concept knowledge bases. Technical Report DCS-TR-391, Rutgers University, Dept. of Computer Science (August 1999)Google Scholar
  7. 7.
    Borgida, A., Patel-Schneider, P.F.: A semantics and complete algorithm for subsumption in the Classic description logic. Journal of Artificial Intelligence Research 1, 277–308 (1994)MATHGoogle Scholar
  8. 8.
    Borgida, A., McGuinness, D.L.: Inquiring about frames. In: Aiello, L.C., Doyle, J., Shapiro, S.C. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Fifth International Conference (KR 1996), November 1996, pp. 340–349. Morgan Kaufmann Publishers, San Francisco (1996)Google Scholar
  9. 9.
    Brachman, R.J.: A Structural Paradigm for Representing Knowledge. PhD thesis, Harvard University, Cambridge, MA (1977); BBN Report No. 3605, Bolt Beranek and Newman, Inc., Cambridge, MA (July 1978) (revised version)Google Scholar
  10. 10.
    Brachman, R.J., Fikes, R.E., Levesque, H.J.: KRYPTON: Integrating terminology and assertion. In: Proceedings of the Third National Conference on Artificial Intelligence, Washington, DC, August 1983, pp. 31–35. American Association for Artificial Intelligence, Menlo Park (1983)Google Scholar
  11. 11.
    Brachman, R.J., Levesque, H.J.: The tractability of subsumption in frame-based description languages. In: Proceedings of the Fourth National Conference on Artificial Intelligence, Austin, Texas, August 1984, pp. 34–37. American Association for Artificial Intelligence, Menlo Park (1984)Google Scholar
  12. 12.
    Brachman, R.J., McGuinness, D.L., Patel-Schneider, P.F., Resnick, L.A., Borgida, A.: Living with CLASSIC: When and how to use a KL-ONE-like language. In: Sowa, J.F. (ed.) Principles of Semantic Networks: Explorations in the representation of knowledge, pp. 401–456. Morgan Kaufmann Publishers, San Francisco (1991)CrossRefGoogle Scholar
  13. 13.
    Brachman, R.J., Schmolze, J.G.: An overview of the KL-ONE knowledge representation system. Cognitive Science 9(2), 171–216 (1985)CrossRefGoogle Scholar
  14. 14.
    Brachman, R.J., Selfridge, P.G., Terveen, L.G., Altman, B., Borgida, A., Halper, F., Kirk, T., Lazar, A., McGuinness, D.L., Resnick, L.A.: Knowledge representation support for data archaeology. In: First International Conference on Information and Knowledge Management, Baltimore, MD, November 1992, pp. 457–464 (1992)Google Scholar
  15. 15.
    Bresciani, P., Franconi, E., Tessaris, S.: Implementing and testing expressive description logics: a preliminary report. In: Ellis, G., Levinson, R.A., Fall, A., Dahl, V. (eds.) Knowledge Retrieval, Use and Storage for Efficiency: Proceedings of the First International KRUSE Symposium, pp. 28–39 (1995)Google Scholar
  16. 16.
    Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D.: Open Knowledge Base Connectivity 2.0. Technical report, Technical Report KSL-09-06, Stanford University KSL (1998)Google Scholar
  17. 17.
    Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D., Rice, J.: The Generic Frame Protocol 2.0. Technical report, Artificial Intelligence Center, SRI International, Menlo Park, CA (July 1997)Google Scholar
  18. 18.
    Devanbu, P., Brachman, R.J., Ballard, B., Selfridge, P.G.: LaSSIE: A knowledge-based software information system. Communications of the ACM 34(5), 35–49 (1991)CrossRefGoogle Scholar
  19. 19.
    Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: Tractable concept languages. In: Proceedings of the Twelfth International Joint Conference on Artificial Intelligence. International Joint Committee on Artificial Intelligence, Sydney, Australia, August 1991, pp. 458–453 (1991)Google Scholar
  20. 20.
    Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A., Nutt, W.: Adding epistemic operators to concept languages. In: Nebel et al. (ed.) [35], pp. 342–353Google Scholar
  21. 21.
    Doyle, J., Patil, R.: Two theses of knowledge representation: Language restrictions, taxonomic classification, and the utility of representation services. Artificial Intelligence 48(3), 261–297 (1991)CrossRefGoogle Scholar
  22. 22.
    Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Cohn, A.G., Schubert, L., Shapiro, S.C. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Sixth International Conference (KR 1998), June 1998, pp. 636–647. Morgan Kaufmann Publishers, San Francisco (1998)Google Scholar
  23. 23.
    International Joint Committee on Artificial Intelligence. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (August 1995)Google Scholar
  24. 24.
    MacGregor, R.M.: A deductive pattern matcher. In: Proceedings of the Seventh National Conference on Artificial Intelligence, St. Paul, Minnesota, August 1988, pp. 403–408. American Association for Artificial Intelligence, Menlo Park (1988)Google Scholar
  25. 25.
    McGuinness, D.L.: Explaining Reasoning in Description Logics. PhD thesis, Department of Computer Science, Rutgers University (October 1996); also available as Rutgers Technical Report Number LCSR-TR-277Google Scholar
  26. 26.
    McGuinness, D.L.: Ontological issues for knowledge-enhanced search. In: Proceedings of Formal Ontology in Information Systems. IOS-Press, Washington (1998); also In: Frontiers in Artificial Intelligence and Applications (to appear)Google Scholar
  27. 27.
    McGuinness, D.L., Borgida, A.: Explaining subsumption in Description Logics. In: IJCAI 1995 [23], pp. 816–821Google Scholar
  28. 28.
    McGuinness, D.L., Patel-Schneider, P.F., Resnick, L.A., Isbell, C., Parker, M., Welty, C.: A description logic-based configuration for the web. SIGART Bulletin 9(2) (fall, 1998)Google Scholar
  29. 29.
    McGuinness, D.L., Resnick, L.A., Isbell, C.: Description Logic in practice: A CLASSIC application. In: IJCAI-1995 [23], pp. 2045–2046Google Scholar
  30. 30.
    McGuinness, D.L., Wright, J.R.: Conceptual modeling for configuration: A description logic-based configurator platform. Artificial Intelligence for Engineering Design, Analysis, and Manufacturing Journal - Special Issue on Configuration (1998)Google Scholar
  31. 31.
    McGuinness, D.L., Wright, J.R.: An industrial strength description logic-based configuration platform. IEEE Intelligent Systems (1998)Google Scholar
  32. 32.
    Moser, M.G.: An overview of NIKL, the new implementation of KL-ONE. Technical Report 5421, BBN Laboratories, 1983. Part of a collection entitled “Research in Knowledge Representation for Natural Language Understanding—Annual Report (September 1, 1982–August 31, 1983)Google Scholar
  33. 33.
    Mylopoulos, J., Bernstein, P., Wong, H.K.T.: A language facility for designing database-intensive applications. ACM Transactions on Database Systems 5(2), 185–207 (1980)CrossRefGoogle Scholar
  34. 34.
    Nebel, B.: Terminological reasoning is inherently intractable. Artificial Intelligence 43(2), 235–249 (1990)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Nebel, B., Rich, C., Swartout, W. (eds.): Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference (KR 1992). Morgan Kaufmann Publishers, San Francisco (1992)Google Scholar
  36. 36.
    Patel-Schneider, P.F.: Small can be beautiful in knowledge representation. In: Proceedings of the IEEE Workshop on Principles of Knowledge-Based Systems, Denver, Colorado, December 1984, pp. 11–16. IEEE Computer Society, Los Alamitos (1984)Google Scholar
  37. 37.
    Patel-Schneider, P.F.: Undecidability of subsumption in NIKL. Artificial Intelligence 39(2), 263–272 (1989)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Patel-Schneider, P.F.: DLP system description. In: Franconi, E., De Giacomo, G., MacGregor, R.M., Nutt, W., Welty, C.A. (eds.) Proceedings of the 1998 International Workshop on Description Logics, June 1998, pp. 87–89 (1998); available electronically as a CEUR publication at http://SunSite.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/Vol-11/
  39. 39.
    Peltason, C., von Luck, K., Nebel, B., Schmiedel, A.: The user’s guide to the BACK system. KIT-Report 42, Fachbereich Informatik, Technische Universität Berlin (January 1987)Google Scholar
  40. 40.
    Schaerf, A.: Reasoning with individuals in concept languages. Data and Knowledge Engineering 13(2), 141–176 (1994)CrossRefGoogle Scholar
  41. 41.
    Schmidt-Schauss, M.: Subsumption in KL-ONE is undecidable. In: Brachman, R.J., Levesque, H.J., Reiter, R. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the First International Conference (KR 1989), May 1989, pp. 421–431. Morgan Kaufmann Publishers, San Francisco (1989)Google Scholar
  42. 42.
    Selfridge, P.: Knowledge representation support for a software information system. In: IEEE Conference on Artificial Intellingence Applications, Miami, Florida, February 1991, pp. 134–140. The Institute of Electrical and Electronic Engineers (1991)Google Scholar
  43. 43.
    von Luck, K., Nebel, B., Peltason, C., Schmiedel, A.: BACK to consistency and incompleteness. In: Stoyan, H. (ed.) Proceedings of GWAI-1985—the 9th German Workshop on Artificial Intelligence, pp. 245–257. Springer, Heidelberg (1986)Google Scholar
  44. 44.
    Wright, J.R., Weixelbaum, E.S., Brown, K., Vesonder, G.T., Palmer, S.R., Berman, J.I., Moore, H.H.: A knowledge-based configurator that supports sales, engineering, and manufacturing at AT&T network systems. In: Proceedings of the Innovative Applications of Artificial Intelligence Conference, Washington, July 1993, pp. 183–193. American Association for Artificial Intelligence, Menlo Park (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ronald J. Brachman
    • 1
  • Alex Borgida
    • 2
  • Deborah L. McGuinness
    • 3
  • Peter F. Patel-Schneider
    • 4
  1. 1.Yahoo! ResearchUSA
  2. 2.Rutgers UniversityUSA
  3. 3.Rensselaer Polytechnic InstituteUSA
  4. 4.Bell Labs ResearchUSA

Personalised recommendations