Weighted Aspect Moment Invariant in Pattern Recognition

  • Rela Puteri Pamungkas
  • Siti Mariyam Shamsuddin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5593)

Abstract

Many drawbacks has been found in Hu’s moment Invariant or known as Geometric Moment Invariant (GMI). Due to its flexibility, GMI is still widely used by the researchers until now. This paper proposes an alternative approach, Weighted Aspect Moment Invariant (WAMI) by combining Weighted Central Moment (WCM) and Aspect Moment Invariant (AsMI) to solve GMI’s drawbacks in term of noise and unequal data scaling. Various insect images are used in this study with two different sizes as simulation images. The simulation results show that the proposed WAMI improves inter-class and intra-class criteria for unequally scaling data compared to AsMI.

Keywords

Pattern Recognition Aspect Moment Invariant Geometric Moment Invariant Weighting Function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wood, J.: Invariant Pattern Recognition: A Review. Pattern Recognition 29, 1–17 (1996)CrossRefGoogle Scholar
  2. 2.
    Mori, S., Suen, C.Y., Yamamoto, K.: Historical Review of OCR Research and Development. Proceedings of the IEEE 80, 1029–1058 (1992)CrossRefGoogle Scholar
  3. 3.
    Hu, M.-K.: Visual Pattern Recognition by Moment Invariants. IRE Transactions on Information Theory 8, 179–187 (1962)MATHGoogle Scholar
  4. 4.
    Shamsuddin, S.M., Nasir, M.N., Darus, M.: Invarianceness of Higher Order Centralized Scale-Invariants Undergo Basic Transformations. International Journal of Computer Mathematics 79, 39–48 (2002)CrossRefMATHGoogle Scholar
  5. 5.
    Feng, P., Keane, M.: A New Set of Moment Invariants for Handwritten Numeral Recognition. In: Proceedings of 1994 IEEE International Conference on Image Processing (ICIP 1994), pp. 154–158. IEEE Press, New York (1994)Google Scholar
  6. 6.
    Raveendran, P., Jegannathan, S., Omatu, S.: New Regular Moment Invariants To Classify Elongated and Contracted Images. In: Proceedings of 1993 International Joint Conference on Neural Networks (IJCNN 1993-Nagoya), pp. 2089–2092. IEEE Press, New York (1993)CrossRefGoogle Scholar
  7. 7.
    Raveendran, P., Omatu, S.: A New Technique To Derive Features for Shift and Unequally Scaled Images. In: Proceedings of 1995 IEEE International Conference on Neural Networks, pp. 2077–2080. IEEE Press, New York (1995)Google Scholar
  8. 8.
    Raveendran, P., Omatu, S., Abu Bakar, W.: Neuro-pattern Classification of Elongated and Contracted Images. Information Sciences – Applications 3, 209–221 (1995)CrossRefGoogle Scholar
  9. 9.
    Raveendran, P., Omatu, S., Poh Sin, C.: A New Technique To Derive Invariant Features for Unequally Scaled Images. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, pp. 3158–3163. IEEE Press, New York (1997)CrossRefGoogle Scholar
  10. 10.
    Raveendran, P., Jegannathan, S., Omatu, S.: Classification of elongated and contracted images using new regular moments. In: IEEE World Congress on Computational Intelligence, 1994 IEEE International Conference on Neural Networks, pp. 4154–4158. IEEE Press, New York (1994)Google Scholar
  11. 11.
    Palaniappan, R., Raveendran, P., Omatu, S.: New Invariant Moments for Non-Uniformly Scaled Images. Pattern Analysis & Applications 3, 78–87 (2000)CrossRefGoogle Scholar
  12. 12.
    Sun, Y., Liu, W., Wang, Y.: United moment invariants for shape discrimination. In: Proceedings of 2003 IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, pp. 88–93. IEEE Press, New York (2003)Google Scholar
  13. 13.
    Muda, A.K., Shamsuddin, S.M., Darus, M.: Invarianceness of Higher Order United Scaled Invariants. Advances in Computer Science and Engineering 1, 105–118 (2007)MATHGoogle Scholar
  14. 14.
    Balslev, I., Døring, K., Eriksen, R.D.: Weighted Central Moments in Pattern Recognition. Pattern Recognition Letters 21, 381–384 (2000)CrossRefGoogle Scholar
  15. 15.
    Pamungkas, R.P., Shamsuddin, S.M.: Weighted Central Moment for Pattern Recognition: Derivation, Analysis of Invarianceness, and Simulation Using Letter Characters. In: 5th Asian Mathematical Conference (AMC 2009), Kuala Lumpur, Malaysia (submitted, 2009)Google Scholar
  16. 16.
    European Centre for Medium-Range Weather Forecasts, http://www.ecmwf.int/products/forecasts/guide/The_Mean_Absolute_Error_MAE.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rela Puteri Pamungkas
    • 1
  • Siti Mariyam Shamsuddin
    • 1
  1. 1.Soft Computing Research GroupUniversiti Teknologi Malaysia, SkudaiJohorMalaysia

Personalised recommendations