A Triangular Formation Strategy for Collective Behaviors of Robot Swarm

  • Xiang Li
  • M. Fikret Ercan
  • Yu Fai Fung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5592)


This paper presents, a novel decentralized control strategy, named Triangular Formation Algorithm (TFA), for a swarm of simple robots. The TFA is a local interaction strategy which basically makes three neighboring robots to form a regular triangular lattice. This strategy requires minimal conditions for robots and it can be easily realized with real robots. The TFA is executed by every member of the swarm asynchronously. For swarm obstacle avoidance, a simplified artificial physical model is introduced to work with the TFA. Simulation results showed that the global behaviors of swarm such as aggregation, flocking and obstacle avoidance in an unknown environment can be achieved using the TFA and obstacle avoidance mechanism.


Swarm robotics Swarm Intelligence Distributed control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bayindir, L., Şahin, E.: A review of studies in swarm robotics. Turk. J. Elec. Engin. 15(2), 115–147 (2007)Google Scholar
  2. 2.
    Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Schmickl, T., Möslinger, C., Crailsheim, K.: Collective perception in a robot swarm. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SAB 2006 Ws 2007. LNCS, vol. 4433, pp. 144–157. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Shaw, E.: The schooling of fishes. Sci. Am. 206, 128–138 (1962)CrossRefGoogle Scholar
  5. 5.
    Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. Computer Graphics 21(4), 25–34 (1987)CrossRefGoogle Scholar
  6. 6.
    Correll, N., Cianci, C., Raemy, X., Martinoli, A.: Self-organized embedded sensor/actuator networks for “smart” turbines”. In: The IEEE/RSJ International Conference on Intelligent Robots and Systems Workshop on Network Robot System: Toward intelligent robotic systems integrated with environments, IEEE Press, Los Alamitos (2006)Google Scholar
  7. 7.
    Chong, C.Y., Kumar, S.P.: Sensor networks: evolution, opportunities, and challenges. Proceedings of the IEEE 91(8), 1247–1256 (2003)CrossRefGoogle Scholar
  8. 8.
    Godwin, M.F., Spry, S.C., Hedrick, J.K.: Distributed system for collaboration and control of UAV groups: experiments and analysis. In: Grundel, D., Murphey, R., Pardalos, P., Prokopyev, O. (eds.) Cooperative Systems. LNEMS, vol. 588, pp. 139–156. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Gustafson, E.H., Lollini, C.T., Bishop, B.E., Wick, C.E.: Swarm technology for search and rescue through multi-sensor multi-viewpoint target identification. In: The 37th Southeastern Symposium on System Theory, pp. 352–356. IEEE Press, Los Alamitos (2005)Google Scholar
  10. 10.
    Bahceci, E., Soysal, O., Sahin, E.: A review: pattern formation and adaptation in multi-robot systems. Technical Report CMU-RI-TR-03-43, Carnegie Mellon University, Pittsburgh, PA, USA (2003)Google Scholar
  11. 11.
    Egerstedt, M., Hu, X.: Formation constrained multi-agent control. IEEE Transaction on Robotics and Automation 17(6), 947–951 (2001)CrossRefGoogle Scholar
  12. 12.
    Koo, T.J., Shahruz, S.M.: Formation of a group of unmanned aerial vehicles. In: The American Control Conference (ACC), vol. 1, pp. 69–74. IEEE Press, Los Alamitos (2001)Google Scholar
  13. 13.
    Balch, T., Hybinette, M.: Behavior-based coordination of large scale robot formations. In: The 4th International Conference on Multiagent Systems (ICMAS), pp. 363–364. IEEE Press, Los Alamitos (2000)CrossRefGoogle Scholar
  14. 14.
    Balch, T., Hybinette, M.: Social potentials for scalable multi-robot formations. In: The IEEE International Conference on Robotics and Automation (ICRA), vol. 1, pp. 73–80. IEEE Press, Los Alamitos (2000)Google Scholar
  15. 15.
    Baras, J.S., Tan, X., Hovareshti, P.: Decentralized control of autonomous vehicles. In: 42nd IEEE Conference on Decision and Control, pp. 1532–1537. IEEE Press, Los Alamitos (2003)Google Scholar
  16. 16.
    Kim, D.H., Wang, H., Shin, S.: Decentralized control of autonomous swarm systems using artificial potential function-analytical design guidelines. J. Intell. Robot Syst. 45, 36–394 (2006)CrossRefGoogle Scholar
  17. 17.
    Spears, W.M., Spears, D.F., Heil, R., Kerr, W., Hettiarachchi, S.: An overview of physicomimetics. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 84–97. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Spears, W., Spears, D., Hamann, J., Heil, R.: Distributed, physics-based control of swarms of vehicles. Autonomous Robots 17, 137–162 (2004)CrossRefGoogle Scholar
  19. 19.
    Shucker, B., Bennett, J.K.: Scalable Control of Distributed Robotic Macrosensors. In: The 7th International Symposium on Distributed Autonomous Robotic Systems (DARS 2004). IEEE Press, Los Alamitos (2004)Google Scholar
  20. 20.
    Shucker, B., Bennett, J.K.: Virtual Spring Mesh Algorithms for Control of Distributed Robotic Macrosensors. Technical report CU-CS-996-05, Department of Computer Science, University of Colorado at Boulder (2005)Google Scholar
  21. 21.
    Lee, G., Chong, N.Y.: Decentralized formation control for a team of anonymous mobile robots. In: The 6th Asian Control Conference, pp. 971–976. IEEE Press, Los Alamitos (2006)Google Scholar
  22. 22.
    Lee, G., Chong, N.Y.: Flocking controls for swarms of mobile robots inspired by fish schools. In: Lazinica, A. (ed.) Recent advances in multi robot systems, I-Tech Education and Publishing, Vienna, Austria (2008)Google Scholar
  23. 23.
    Klein, J.: Breve: a 3D simulation environment for the simulation of decentralized systems and artificial life. In: Artificial Life VIII, the 8th International Conference on the Simulation and Synthesis of Living Systems, MIT Press, Cambridge (2002), http://www.spiderland.org/breve Google Scholar
  24. 24.
    Yang, Y., Xiong, N., Chong, N.Y., Défago, X.: A decentralized and adaptive flocking algorithm for autonomous mobile robots. In: The 3rd International Conference on Grid and Pervasive Computing Workshops, pp. 262–268. IEEE Press, Los Alamitos (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Xiang Li
    • 1
  • M. Fikret Ercan
    • 1
  • Yu Fai Fung
    • 2
  1. 1.Singapore PolytechnicSchool of Electrical and Electronic EngineeringSingapore
  2. 2.Department of Electrical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR

Personalised recommendations