Advertisement

Study of the Correlation between the Concrete Wall Thickness Measurement Results by Ultrasonic Pulse Echo and the PTF Model for Assymetrical Functions

  • Lucian Pusca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5592)

Abstract

This paper presents an interpretation of the results of the Pulse-echo methods (Radar Impact-Echo, Ultrasonic Impulse-echo) and simulation of wave propagation for testing concrete specimens with metal ducts given in [1-15], in terms of the invariance properties of PTF (Practical Test Function) model for asymmetrical pulses presented and developed in [20] and [26].

The interpreted results include various aspects of the pulse echo method (previously published by Krause, Maierhofer, Wiggenhauser, Bärmann, Langenberg, Frielinghaus, Krautkramer, Neisecke, Wollbold, Schickert) as: radar: propagation, reflection and scattering of electromagnetic pulses; impact echo: propagation, reflection and scattering of elastic waves after mechanical impact; ultrasonic pulse echo: propagation and dispersion of sound waves after indication with ultrasonic transducers.

The interpretation of the above results with the help of the PTF model for asymmetrical functions revealed the compatibility between the first and second order therms representation of a sharp pulse-defined as a practical test function- and some of the experimental results.

As a possible application, is mentioned phase detection by multiplying the alternating input signal with an assymetrical function and integration of the resulting function for more robust results than the one presented in [27].

The second part of the paper presents the a heuristic algorithm for generating asymmetrical practical test functions (that could be used to describe impact echo phenomena for the elastic waves in various materials, including concrete) using MATLAB procedures some possibilities for obtaining asymmetrical pulses as related to this middle of the working interval using the derivative of such symmetrical pulse for certain diferential equations corresponding to second order systems (with unity-step input and for an input represented by a gaussian pulse).

Keywords

Nondestructive Test Deutsche Gesellschaft Maximum Aggregate Size Alternate Input Signal Asymmetrical Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krause, M., et al.: Comparison of Pulse-Echo-Methods for Testing Concrete. In: International Symposium Non-Destructive Testing in Civil Engineering (NDT-CE), Berlin, September 26-28 (1995)Google Scholar
  2. 2.
    Krause, M., Maierhofer, C., Wiggenhauser, H.: Thickness measurement of concrete elements using radar and ultrasonic impulse echo techniques. In: Forde, M.C. (ed.) Proceedings of the 6th International Conference on Structural Faults and Repair, London, UK, July 1995, vol. 1, pp. 17–24. Engineering Technics Press, Edinburgh (1995)Google Scholar
  3. 3.
    Sansalone, M., Carino, N.: Detecting Delaminations in Concrete Slabs with and without Overlays Using the Impact-Echo Method. ACI Materials Journal 86, 175–184 (1989)Google Scholar
  4. 4.
    Kroggel, O., Jahnson, R., Ratmann, M.: Novel Ultrasound System to Detect Voids Ducts in Posttensioned Bridges. In: Forde, M.C. (ed.) Proceedings of the 6th International Conference on Structural Faults and Repair, London, UK, July 1995, vol. 1, pp. 203–208. Engineering Technics Press, Edinburgh (1995)Google Scholar
  5. 5.
    Hillger, W.: Inspection of concrete by ultrasonic pulse-echo-technique. In: Proceedings of the 6th European Conference on Non Destructive Testing, Nice, pp. 1159–1163 (1994)Google Scholar
  6. 6.
    Schickert, M.: Einfluß der frequenzunabhängigen Schallschwächung auf der Ultraschall-Laufzeitmessung an mineralischen Stoffen. In: Berichtsband zur DGZfP-Jahrestagung, Timmendorfer Strand, May 9-11, 1994, vol. 43(2), pp. 479-485 (1994)Google Scholar
  7. 7.
    Krause, M., Wiggenhauser, H., Wilsch, G.: Advanced Pulse Echo Method for Ultrasonic Testing of concrete. In: Bungey, J.H. (ed.) Nondestructive Testing in Civil Engineering, an International Conference, pp. 821–827. The British Institute of Non-Destructive Testing, Northhampton (1993)Google Scholar
  8. 8.
    Maierhofer, C., Borchardt, K., Henschen, J.: Application and Optimization of Impulse-Radar for Non-Destructive Testing in Civil Engineering. In: Proceedings of the International Symposium NDT in Civil Engineering, Berlin, September 26-28, 1995, Deutsche Gesellschaft für Zerstörungs- freie Prüfung e.V. (in press)Google Scholar
  9. 9.
    Kretzschmar, F., Köhler, B.: Prüfung von Ortsbetonauskleidungen mit Ultraschallverfahren, DGZfP-Jahrestagung, May 9-11, 1994, S. 487. Deutsche Gesellschaft für zerstörungsfreie Prüfung e.V., Berlin (1995); Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.V: Merkblatt für das Ultraschall-Impuls- Echo-Verfahren zur Zerstörungsfreien Prüfung mineralischer Baustoffe und Bauteile, Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.V., Berlin (1993)Google Scholar
  10. 10.
    Bungey, J.H.: Nondestructive testing of concrete - the current scene. Nondestructive Testing Evaluation 5, 277–300 (1990); Wollbold, F., Neisecke, J.: Ultrasonic-Impulse-Echo-Technique - Advantages of an Online-Imaging Technique for the Inspection of Concrete. In: Proceedings of the International Symposium NDT in Civil Engineering, Berlin, September 26-28, 1995. Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.V. (in press, 1995)Google Scholar
  11. 11.
    Doctor, S., Hall, T., Reid, L.: SAFT: The Evolution of a Signal Processing Technology for Ultrasonic Testing. NDT International 19, 163–167 (1986)CrossRefGoogle Scholar
  12. 12.
    Maisel, M., Kreier, P., Müller, W., Netzelmann, U.: Rekonstruktion von Fehlstellen in Kera- mik mittels 3D-Röntgen CT und HF Ultraschall - Ein Vergleich. In: DGZfP-Jahrestagung 1995, Berlin Deutsche Gesellschaft für Zerstörungsfreie Prüfung e. V. (in press)Google Scholar
  13. 13.
    Fellinger, P., Marklein, R., Langenberg, K., Klaholz: Numerical Modeling of elastic Wave Propagation and Scattering with EFIT - Elastodynamic Finite Integration Technique. Wave Motion 21, 47–66 (1995)CrossRefMATHGoogle Scholar
  14. 14.
    Langenberg, K., Fellinger, P., Marklein, R., Zanger, P., Mayer, K., Kreutter, T.: Inverse Method, and Imaging. In: Achenbach, J.D. (ed.) Evaluation of Materials and Structures by Quantitative Ultrasonics, pp. 318–398. Springer, Vienna (1993)Google Scholar
  15. 15.
    Toma, C.: An extension of the notion of observability at filtering and sampling devices. In: Proceedings of the International Symposium on Signals, Circuits and Systems Iasi SCS 2001, Romania, pp. 233–236 (2001)Google Scholar
  16. 16.
    Toma, C.: The possibility of appearing acausal pulses as solutions of the wave equation. The Hyperion Scientific Journal 4(1), 25–28 (2004)Google Scholar
  17. 17.
    Toma, G.: Practical test-functions generated by computer algorithms. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 576–584. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Kulikov, G.Y.: An Advanced Version of the Local-Global Step Size Control for Runge-Kutta Methods Applied to Index 1 Differential-Algebraic Systems. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3037, pp. 565–569. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Zhang, Z., Ping, B., Dong, W.: Oscillation of unstable type second order nonlinear difference equation. Korean J. Computer and Appl. Math. 9(1), 87–99 (2002)MATHGoogle Scholar
  20. 20.
    Toma, C.: The necessity for using oscillating systems for sampling optoelectronic signals. Bulgarian Journal of Physics 27(suppl. 2), 187–190 (2000)Google Scholar
  21. 21.
    Toma, C.: Filtering possibilities based on oscillating systems for optoelectronic signals. In: SPIE Proceedings, vol. 4430, pp. 842–845 (2001)Google Scholar
  22. 22.
    Cattani, C.: Harmonic Wavelets towards Solution of Nonlinear PDE. Computers and Mathematics with Applications 50, 1191–1210 (2005)CrossRefMATHGoogle Scholar
  23. 23.
    Rushchitsky, J.J., Cattani, C., Terletskaya, E.V.: Wavelet Analysis of the evolution of a solitary wave in a composite material. International Applied Mechanics 40(3), 311–318 (2004)CrossRefGoogle Scholar
  24. 24.
    Sterian, A., Toma, C.: Filtering possibilities for processing optoelectronic current for acceleration measurements. In: SPIE Proceedings, vol. 4827, pp. 403–408 (2002)Google Scholar
  25. 25.
    Sterian, A., Toma, C.: Phase detection for vibration measurements based on test functions. In: SPIE Proceedings, vol. 5503, pp. 164–168 (2004)Google Scholar
  26. 26.
    Toma, C.: Equations with partial derivatives and differential equations used for simulating acausal pulses. In: International Conference Physics and Control Physcon 2003, Sankt-Petersburg, Russia, August 20-22, 2003, pp. 1178–1183 (2003)Google Scholar
  27. 27.
    Cattani, C.: Multiscale Analysis of Wave Propagation in Composite Materials. Mathematical Modelling and Analysis 8(4), 267–282 (2003)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Lucian Pusca
    • 1
  1. 1.Smart Edu Software Publishing HouseBucharestRomania

Personalised recommendations