Advertisement

Phased Scene Change Detection in Ubiquitous Environments

  • Seong-Yoon Shin
  • Ji-Hyun Lee
  • Sang-Joon Park
  • Jong-Chan Lee
  • Seong-Bae Pyo
  • Yang-Won Rhee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5592)

Abstract

In a ubiquitous environment, video transfer is very important. In particular, transferring of selected video clips obtained through scene change detection is more important than transferring an entire video. In this paper, inter-frame difference values are first computed through combining the χ 2 histogram with the color histogram, as well as normalization. Next, key frames for a cluster are determined through distance clustering and K-mean clustering. Lastly, key frames for a group are determined through a likelihood ratio. According to our experiments, the proposed method surpassed other methods in its ability to detect scene changes due to the use of three steps: difference value calculation, clustering, and key frame extraction.

Keywords

Clustering Likelihood Ratio Key Frame K-mean Clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antani, S., Kasturi, R., Jain, R.: A survey on the use of pattern recognition methods for abstraction, indexing and retrieval of images and video. Pattern Recognition 35(4), 945–965 (2002)CrossRefMATHGoogle Scholar
  2. 2.
    Ferman, A.M., Tekalp, A.M., Mehrotra, R.: Robust Color Histogram Descriptors for Video Segment Retrieval and Identification. IEEE Transactions on Image Processing 11(5), 497–508 (2002)CrossRefGoogle Scholar
  3. 3.
    Lee, M.S., Yang, Y.M., Lee, S.W.: Automatic video parsing using shot boundary detection and camera operation analysis. Pattern Recognition 34(3), 711–719 (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Yeung, M., Yeo, B., Liu, B.: Segmentation of Video by Clustering and Graph Analysis. Computer Vision and Image Understanding 71(1), 94–109 (1998)CrossRefGoogle Scholar
  5. 5.
    Yeo, B.-L.: Efficiency processing of compressed image and video. Technical report, PhD thesis, Princeton University (1996)Google Scholar
  6. 6.
    Zhang, H., Low, C.Y., Gong, Y., Smoliar, S.: Video Parsing Using Compressed Data. In: Proc. SPIE Conf. Image and Video Processing II, vol. 2182, pp. 142–149 (1994)Google Scholar
  7. 7.
    Zhong, D., Chang, S.F.: Video Object Model and Segmentation for Content-Based Video Indexing. In: IEEE International Conference on Circuits and Systems (June 1997)Google Scholar
  8. 8.
    Yeung, M.M., Yeo, B.-L., Wolf, W., Liu, B.: Video Browsing Using Clustering and Scene Transition Compressed Sequences. IS&T SPIE, Multimedia Computing and Networking (1995)Google Scholar
  9. 9.
    Zhang, H., Tan, S.Y., Smoliar, S.W., Yihong, G.: Automatic Parsing and Indexing of News Video. Multimedia Systems 2, 256–266 (1995)CrossRefGoogle Scholar
  10. 10.
    Shin, S.Y., Pyo, S.B.: Video Browsing Using An Efficient Scene Change Detection in Telematics. Journal of KSCI 11(4), 147–154 (2006)Google Scholar
  11. 11.
    Kim, Y.L., Rhee, Y.W.: Scene Change Detection Using Local χ 2-Test. Journal of KSCI 11(3), 193–202 (2006)Google Scholar
  12. 12.
    Sarah, V.P.: Video Segmentation and indexing using Motion Estimation. Doctorial Dissertation, University of Bristol (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Seong-Yoon Shin
    • 1
  • Ji-Hyun Lee
    • 1
  • Sang-Joon Park
    • 1
  • Jong-Chan Lee
    • 1
  • Seong-Bae Pyo
    • 2
  • Yang-Won Rhee
    • 1
  1. 1.Dept. of Kunsan Natl.Univ. KoreaKorea
  2. 2.Dept. of Computer SoftwareInduk CollegeSouth Korea

Personalised recommendations