Temporal Relationships between Rough Time Intervals

  • Anahid Bassiri
  • Mohammad R. Malek
  • Ali A. Alesheikh
  • Pouria Amirian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5592)


Time is a basic measure used to quantify the motions of objects, to compare the durations of events, and to sequence events. Temporal behaviors of spatial objects have occupied geoinformatic’s minds and this motivation can be seen in temporal GIS (Geospatial Information System) and navigation. This article focuses on a mathematical abstraction for calculating periods of time. Uncertainty in temporal intervals is considered and temporal relationships are defined based on rough set theory as a powerful device to handle the indeterminate time interval.


GIS Time interval Rough set topological relationships 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.F.: Towards a general theory of actions and time. Artificial Intelligence, 23. Block, R. A Time and consciousness. In: Underwood, G., Stevens, R. (eds.) Aspects of Consciousness. Psychological Issues, vol. 1, Academic Press, London (1984)Google Scholar
  2. 2.
    Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of the ACM (1983)Google Scholar
  3. 3.
    Bassiri, A., Malek, M.R., Ali, A., Alesheikh: Rough spatio-temporal topological relationships, FLINS World Scientific, Computational Intelligence in Decision and Control (2008)Google Scholar
  4. 4.
    Cheng, T.S., Gadia, S.: A Pattern Matching Language for Spatio-Temporal Databases. In: Proc. Third Int’l Conf. Information and Knowledge Management, pp. 288–295 (1994)Google Scholar
  5. 5.
    Claramunti, C., Jianng, B.: A Representation of Relationships in Temporal Spaces (1996)Google Scholar
  6. 6.
    Claramunt, C., Jiang, B.: An integrated representation of spatial and temporal relationships between evolving regions. Journal of Geographical Systems 3(4), 411–428 (2001)CrossRefGoogle Scholar
  7. 7.
    DuBois, D., Prade, H.: Processing fuzzy temporal knowledge. IEEE Transactions on Systems, Man and Cybernetics 19, 729–744 (1989)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Huang, Z.: Proceedings of the Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007), Environment, Tokyo Denki University, vol. 1, pp. 169–172 (2007)Google Scholar
  9. 9.
    Pawlak, Z., Polkowski, L., Komorowski, J.: Rough set: A tutorial. Warszawa, Poland (1991)Google Scholar
  10. 10.
    Rodabaugh, S.E.: Relationship of Algebraic Theories to Powerset Theories and Fuzzy Topological Theories for Lattice-Valued Mathematics, Department of Mathematics and Statistics, Youngstown State University, Youngstown 44555-3609, OH, USA (2006)Google Scholar
  11. 11.
    Setarehdan, S.K., Soraghan, J.J.: Automatic cardiac LV boundary detection and tracking using hybrid fuzzy temporal and fuzzy multiscale edge detection. IEEE Transactions on Biomedical Engineering 46, 1364–1378 (1999)CrossRefGoogle Scholar
  12. 12.
    Torres, A., Marin, M., Dpto, R.: With disjunctive fuzzy temporal constraint networks Bosch. In: Proceedings. Ninth International Symposium on Temporal Representation and Reasoning, pp. 36–43 (2002)Google Scholar
  13. 13.
    Worboys, M.F.: Imprecision in finite resolution spatial data. GeoInformatica (1998)Google Scholar
  14. 14.
    Zadeh, L.A.: The concept of a linguistic variable and its applications to approximate reasoning. Part I, Information Science. Information Science, Part II 8, 199–249, 301–357 (1975)Google Scholar
  15. 15.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Anahid Bassiri
    • 1
  • Mohammad R. Malek
    • 1
  • Ali A. Alesheikh
    • 1
  • Pouria Amirian
    • 1
  1. 1.Faculty of Geodesy and Geomatics Eng.K.N.Toosi University of TechnologyTehranIran

Personalised recommendations