Designing Data Warehouses for Geographic OLAP Querying by Using MDA

  • Octavio Glorio
  • Juan Trujillo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5592)


Data aggregation in Geographic Information Systems (GIS) is a desirable feature, spatial data are integrated in OLAP engines for this purpose. However, the development and operation of those systems is still a complex task due to methodologies followed. There are some ad hoc solutions that deal only with isolated aspects and do not provide developer and analyst with an intuitive, integrated and standard framework for designing all relevant parts. To overcome these problems, we have defined a model driven approach to accomplish Geographic Data Warehouse (GDW) development. Then, we have defined a data model required to implement and query spatial data. Its modeling is defined and implemented by using an extension of UML metamodel and it is also formalized by using OCL language. In addition, the proposal has been verified against a example scenario with sample data sets. For this purpose, we have accomplished a developing tool based on Eclipse platform and MDA standard. The great advantage of this solution is that developers can directly include spatial data at conceptual level, while decision makers can also conceptually make geographic queries without being aware of logical details.


Spatial data warehousing GIS-OLAP MDA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bimonte, S., Tchounikine, A., Bertolotto, M.: Integration of geographic information into multidimensional models. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 316–329. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bimonte, S., Tchounikine, A., Miquel, M.: Towards a spatial multidimensional model. In: DOLAP 2005: Proceedings of the 8th ACM international workshop on Data warehousing and OLAP, pp. 39–46. ACM Press, New York (2005)Google Scholar
  3. 3.
    Bimonte, S., Wehrle, P., Tchounikine, A., Miquel, M.: Gewolap: A web based spatial olap proposal. In: OTM Workshops (2), pp. 1596–1605 (2006)Google Scholar
  4. 4.
    Escribano, A., Gomez, L., Kuijpers, B., Vaisman, A.A.: Piet: a gis-olap implementation. In: DOLAP 2007: Proceedings of the ACM tenth international workshop on Data warehousing and OLAP, pp. 73–80. ACM Press, New York (2007)CrossRefGoogle Scholar
  5. 5.
    Glorio, O., Pardillo, J., Mazón, J.-N., Trujillo, J.: Dawara: An eclipse plugin for using i* on data warehouse requirement analysis. In: IEEE International Conference on Requirements Engineering, pp. 317–318 (2008)Google Scholar
  6. 6.
    Glorio, O., Trujillo, J.: An MDA Approach for the Development of Spatial Data Warehouses. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 23–32. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Gomez, L., Haesevoets, S., Kuijpers, B., Vaisman, A.A.: Spatial aggregation: Data model and implementation. CoRR, abs/0707.4304 (2007)Google Scholar
  8. 8.
    Kimball, R., Ross, M.: The Data Warehouse Toolkit, 2nd edn. Wiley, Chichester (2002)Google Scholar
  9. 9.
    Luján-Mora, S., Trujillo, J., Song, I.-Y.: A uml profile for multidimensional modeling in data warehouses. Data Knowl. Eng. 59(3), 725–769 (2006)CrossRefGoogle Scholar
  10. 10.
    Jarke, Y.V.M., Lenzerini, M., Vassiliadis, P.: Fundamentals of Data Warehouses. Springer, Heidelberg (2000)CrossRefMATHGoogle Scholar
  11. 11.
    Malinowski, E., Zimányi, E.: Representing spatiality in a conceptual multidimensional model. In: GIS 2004: Proceedings of the 12th annual ACM international workshop on Geographic information systems, pp. 12–22. ACM Press, New York (2004)CrossRefGoogle Scholar
  12. 12.
    Malinowski, E., Zimányi, E.: Requirements specification and conceptual modeling for spatial data warehouses. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp. 1616–1625. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Malinowski, E., Zimányi, E.: Implementing spatial datawarehouse hierarchies in object-relational dbmss. In: ICEIS (1), pp. 186–191 (2007)Google Scholar
  14. 14.
    Pardillo, J., Mazón, J.-N., Trujillo, J.: Bridging the semantic gap in olap models: platform-independent queries. In: DOLAP, pp. 89–96 (2008)Google Scholar
  15. 15.
    Pardillo, J., Mazón, J.-N., Trujillo, J.: Model-driven metadata for OLAP cubes from the conceptual modelling of data warehouses. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 13–22. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Pardillo, J., Trujillo, J.: Integrated model-driven development of goal-oriented data warehouses and data marts. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 426–439. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Pinet, F., Duboisset, M., Soulignac, V.: Using uml and ocl to maintain the consistency of spatial data in environmental information systems. Environmental Modelling and Software 22(8), 1217–1220 (2007)CrossRefGoogle Scholar
  18. 18.
    Rivest, Y.B.S., Marchand, P.: Toward better support for spatial decision making: Defining the characteristics of spatial on-line analytical processing. Geomatica 55(4), 539–555 (2001)Google Scholar
  19. 19.
    Bimonte, S., Tchounikine, A., Miquel, M.: GeoCube, a multidimensional model and navigation operators handling complex measures: Application in spatial OLAP. In: Yakhno, T., Neuhold, E.J. (eds.) ADVIS 2006. LNCS, vol. 4243, pp. 100–109. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Stefanovic, N., Han, J., Koperski, K.: Object-based selective materialization for efficient implementation of spatial data cubes. IEEE Trans. on Knowl. and Data Eng. 12(6), 938–958 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Octavio Glorio
    • 1
  • Juan Trujillo
    • 1
  1. 1.Lucentia Research Group Department of Software and Computing SystemsUniversity of AlicanteSpain

Personalised recommendations