A Model-Based Scan Statistics for Detecting Geographical Clustering of Disease

  • Massimo Bilancia
  • Silvestro Montrone
  • Paola Perchinunno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5592)

Abstract

The classical likelihood ratio spatial scan statistics has been widely used in spatial epidemiology for disease cluster detection. The question is whether the geographic incidence pattern is due to random fluctuations or the map reflects true underlying geographical variation due to etiologic risk factors. The hypothesis underlying the classic scan statistics assume that disease counts in different locations have independent Poisson distribution; unfortunately, outcomes in spatial units are often not independent of each other. Risk estimates of areas that are close to each other will tend to be positively correlated as they share a number of spatially varying characteristics. Ignoring the overdispersion caused by spatial autocorrelation leads to incorrect results. To overcome this difficulty, we propose a model-based approach adjusting for area-specific fixed-effects measuring potential effect modifiers, and for large-scale geographical variation of etiologic factors that vary continuously in space and are not expressly present within the model. We apply our methodology to the spatial distribution of lung cancer male mortality occurred in the province of Lecce, Italy, during the period 1992-2001.

Keywords

Disease clustering Spatial scan statistics Model-based scan statistics BYM model Lung cancer mortality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Assuncao, R., Costa, M., Tavares, A., Ferreira, S.: Fast Detection of Arbitrarily Shaped Disease Clusters. Stat. Med. 25, 723–745 (2006)CrossRefGoogle Scholar
  2. 2.
    Banerjee, S., Carlin, B.P., Gelfand, A.E.: Hierarchical Modeling and Analysis of Spatial Data. Chapman and Hall/CRC, New York (2003)CrossRefMATHGoogle Scholar
  3. 3.
    Bayarri, M.J., Berger, J.O.: Quantifying Surprise in The Data and Model Verification. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics 6, Proceedings of the Sixth Valencia International Meeting, Oxford University Press, Oxford (1999)Google Scholar
  4. 4.
    Bernardinelli, L., Clayton, F., Montomoli, C.: Bayesian Estimates of Disease Map: how Important are Priors? Stat. Med. 14, 2411–2431Google Scholar
  5. 5.
    Bilancia, M., Fedespina, A.: Geographical Clustering of Lung Cancer in the Province of Lecce, Italy, 1992-2001 (submitted, 2009)Google Scholar
  6. 6.
    Cadum, E., Costa, G., Biggeri, A., Martuzzi, M.: Deprivation and Mortality: a Deprivation Index Suitable for Geographical Analysis of Inequalities. Epidemiol. Prev. 23(3), 175–187 (1999)Google Scholar
  7. 7.
    Carlin, B.P., Louis, T.A.: Bayes and Empirical Bayes Methods for Data Analysis, 2nd edn. Chapmann & Hall/CRCGoogle Scholar
  8. 8.
    Cislaghi, C.: Gis8 - Atlante Italiano di Mortalità 1981-2001 Versione 8.0 beta-test.ATI ESA (2005)Google Scholar
  9. 9.
    Held, L., Raßer, G.: Bayesian Detection of Clusters and Discontinuities in Disease Maps. Biometrics 56, 13–21Google Scholar
  10. 10.
    Istituto Nazionale di Statistica: Codici dei Comuni, delle Provincie e delle Regioni (2009), http://www.istat.it/strumenti/definizioni/comuni
  11. 11.
    Kelsall, J., Wakefield, J.: Discussion of Bayesian Methods for Spatially Correlated Disease and Exposure Data. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics 6, Proceedings of the Sixth Valencia International Meeting, Oxford University Press, Oxford (1998)Google Scholar
  12. 12.
    Klassen, A.C., Kulldorff, M., Curriero, F.: Geographical Clustering of Prostate Cancer Grade and Stage at Diagnosis, Before and After Adjustment for Risk Factors. Int. J. Health Geo. 4(1) (2005), doi:10.1186/1476-072X-4-1Google Scholar
  13. 13.
    Kulldorff, M., Nagarwalla, N.: Spatial Disease Clusters: Detection and Inference. Stat. Med. 14, 799–810 (1995)CrossRefGoogle Scholar
  14. 14.
    Kulldorff, M.: A Spatial Scan Statistics. Commun. Statist. - Theory Meth. 26(6), 1481–1496 (1997)CrossRefMATHGoogle Scholar
  15. 15.
    Kulldorff, M.: Spatial Scan Statistics: Models, Calculations and Applications. In: Balakrishnan, N., Glaz, J. (eds.) Recent Advances on Scan Statistics and Applications, Birkhäuser, Boston, USA (1999)Google Scholar
  16. 16.
    Kulldorff, M., Song, C., Gregorio, D., Samociuk, H., DeChello, L.: Cancer Map Patterns: Are They Random or not? Am. J. Prev. Med. 30(2S), S37–S49 (2006)Google Scholar
  17. 17.
    Kulldorff, M., Tango, T., Park, P.J.: Power Comparisons for Disease Clustering Test. Comput. Stat. Data An. 42, 665–684 (2003)CrossRefMATHGoogle Scholar
  18. 18.
    Lawson, A., Denison, D.: Spatial Cluster Modeling. Chapmann & Hall/CRC, Boca Raton (2002)CrossRefMATHGoogle Scholar
  19. 19.
    Loh, J.M., Zhu, Z.: Accounting for Spatial Correlation in the Scan Statistics. Ann. Appl. Stat. 1(2), 560–584 (2007)CrossRefMATHGoogle Scholar
  20. 20.
    Möller, J., Waagepetersen, R.P.: Statistical Inference and Simulation for Spatial Point Processes. Chapmann & Hall/CRC (2004)Google Scholar
  21. 21.
    Naus, J.I.: The Distribution of The Size of Maximum Cluster of Points on the Line. J. Am. Stat. Ass. 60, 523–538Google Scholar
  22. 22.
    Osservatorio Epidemiologico Regione Puglia: Atlante delle Cause di Morte della Regione Puglia Anni 2000-2005 (2006), http://www.oerpuglia.it
  23. 23.
    Pascutto, C., Wakefield, J., Best, N.G., Richardson, S., Bernardinelli, S., Staines, A., Elliot, P.: Statistical Issues in the Analysis of Disease Mapping Data. Stat. Med. 19, 2493–2519 (2000)CrossRefGoogle Scholar
  24. 24.
    Recuenco, S., Eidson, M., Kulldorff, M., Johnson, G., Cherry, B.: Spatial and Temporal Patterns of Enzootic Raccoon Rabies Adjusted for Multiple Covariates. Int. J. Health Geo. 6(14), doi:10.1186/1476-082X-6-14Google Scholar
  25. 25.
    Richardson, S., Thomson, A., Best, N., Elliot, P.: Interpreting Posterior Relative Risk Estimates in Disease Mapping Studies. Environ. Health Perspect. 112(9), 1016–1025 (2004)CrossRefGoogle Scholar
  26. 26.
    Roalfe, A.K., Holder, R.L., Wilson, S.: Standardization of Rates Using logistic Regression: a Comparison With the Direct Method. Health Res. Serv. 8, 275, doi:10.1186/1472-6963-8-275Google Scholar
  27. 27.
    Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. Chapmann & Hall/CRC (2005)Google Scholar
  28. 28.
    Spiegelhalter, D.J., Best, N.G., Carlin, B.P., van der Linde, A.: Bayesian Measures of Model Complexity and Fit (with Discussion). J. Roy. Statist. Soc. B 64(4), 583–639Google Scholar
  29. 29.
    Wakefield, J., Best, N.G., Waller, L.A.: Bayesian Approaches to Disease Mapping. In: Elliot, P., Wakefield, J., Best, N.G., Briggs, D.J. (eds.) Spatial Epidemiology: Methods and Application, Oxford University Press, Oxford (2000)Google Scholar
  30. 30.
    Wakefield, J.: Disease Mapping and Spatial regression With Count Data. Biostatist 8(2), 158-1-183 (2007)Google Scholar
  31. 31.
    Zhang, T., Lin, G.: Spatial Scan Statistics in Loglinear Models. Comput. Stat. Data An (in press, 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Massimo Bilancia
    • 1
  • Silvestro Montrone
    • 1
  • Paola Perchinunno
    • 1
  1. 1.Dipartimento di Scienze Statistiche “Carlo Cecchi”BariItaly

Personalised recommendations