Reoptimization of the Shortest Common Superstring Problem

(Extended Abstract)
  • Davide Bilò
  • Hans-Joachim Böckenhauer
  • Dennis Komm
  • Richard Královič
  • Tobias Mömke
  • Sebastian Seibert
  • Anna Zych
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5577)


A reoptimization problem describes the following scenario: Given an instance of an optimization problem together with an optimal solution for it, we want to find a good solution for a locally modified instance.

In this paper, we deal with reoptimization variants of the shortest common superstring problem where the local modifications consist of adding or removing a single string. We show NP-hardness of these reoptimization problems and design several approximation algorithms for them.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Archetti, C., Bertazzi, L., Speranza, M.G.: Reoptimizing the traveling salesman problem. Networks 42(3), 154–159 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Archetti, C., Bertazzi, L., Speranza, M.G.: Reoptimizing the 0-1 knapsack problem. Technical Report 267, University of Brescia (2006)Google Scholar
  3. 3.
    Ausiello, G., Escoffier, B., Monnot, J., Paschos, V.T.: Reoptimization of minimum and maximum traveling salesman’s tours. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 196–207. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Bilò, D., Böckenhauer, H.-J., Hromkovič, J., Královič, R., Mömke, T., Widmayer, P., Zych, A.: Reoptimization of Steiner trees. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 258–269. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bilò, D., Widmayer, P., Zych, A.: Reoptimization of weighted graph and covering problems. In: Bampis, E., Skutella, M. (eds.) WAOA 2008. LNCS, vol. 5426, pp. 201–213. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Böckenhauer, H.-J., Bongartz, D.: Algorithmic Aspects of Bioinformatics. Natural Computing Series. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  7. 7.
    Böckenhauer, H.-J., Forlizzi, L., Hromkovič, J., Kneis, J., Kupke, J., Proietti, G., Widmayer, P.: Reusing optimal TSP solutions for locally modified input instances (extended abstract). In: Proc. of the Fourth IFIP International Conference on Theoretical Computer Science (IFIP TCS 2006), vol. 209, pp. 251–270. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Böckenhauer, H.-J., Hromkovič, J., Královič, R., Mömke, T., Rossmanith, P.: Reoptimization of Steiner trees: Changing the terminal set. Theoretical Computer Science (to appear)Google Scholar
  9. 9.
    Böckenhauer, H.-J., Hromkovič, J., Mömke, T., Widmayer, P.: On the hardness of reoptimization. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 50–65. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Böckenhauer, H.-J., Komm, D.: Reoptimization of the metric deadline TSP. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 156–167. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Escoffier, B., Milanic, M., Paschos, V.T.: Simple and fast reoptimizations for the Steiner tree problem. Technical Report 2007-01, DIMACS (2007)Google Scholar
  12. 12.
    Gallant, J., Maier, D., Storer, J.A.: On finding minimal length superstrings. Journal of Computer and System Sciences 20(1), 50–58 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Schäffter, M.W.: Scheduling with forbidden sets. Discrete Applied Mathematics 72(1-2), 155–166 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Setubal, C., Meidanis, J.: Introduction to Computational Molecular Biology. Natural Computing Series. PWS Publishing Company (1997)Google Scholar
  15. 15.
    Sweedyk, Z.: A \(2{1\over2}\)-approximation algorithm for shortest superstring. SIAM Journal on Computing 29(3), 954–986 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tarhio, J., Ukkonen, E.: A greedy approximation algorithm for constructing shortest common superstrings. Theoretical Computer Science 57(1), 131–145 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Van Hoesel, S., Wagelmans, A.: On the complexity of postoptimality analysis of 0/1 programs. Discrete Applied Mathematics 91(1-3), 251–263 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Vassilevska, V.: Explicit inapproximability bounds for the shortest superstring problem. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 793–800. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Davide Bilò
    • 1
  • Hans-Joachim Böckenhauer
    • 2
  • Dennis Komm
    • 2
  • Richard Královič
    • 2
  • Tobias Mömke
    • 2
  • Sebastian Seibert
    • 2
  • Anna Zych
    • 2
  1. 1.Department of Computer ScienceUniversity of L’AquilaItaly
  2. 2.Department of Computer ScienceETH ZurichSwitzerland

Personalised recommendations