Advertisement

Haplotype Inference Constrained by Plausible Haplotype Data

  • Michael R. Fellows
  • Tzvika Hartman
  • Danny Hermelin
  • Gad M. Landau
  • Frances Rosamond
  • Liat Rozenberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5577)

Abstract

The haplotype inference problem (HIP) asks to find a set of haplotypes which resolve a given set of genotypes. This problem is of enormous importance in many practical fields, such as the investigation of diseases, or other types of genetic mutations. In order to find the haplotypes that are as close as possible to the real set of haplotypes that comprise the genotypes, two models have been suggested which by now have become widely accepted: The perfect phylogeny model and the pure parsimony model. All known algorithms up till now for the above problem may find haplotypes that are not necessarily plausible, i.e. very rare haplotypes or haplotypes that were never observed in the population. In order to overcome this disadvantage we study in this paper, for the first time, a new constrained version of HIP under the above mentioned models. In this new version, a pool of plausible haplotypes \(\widetilde{H}\) is given together with the set of genotypes G, and the goal is to find a subset \(H \subseteq \widetilde{H}\) that resolves G. For the constrained perfect phylogeny haplotyping (CPPH) problem we provide initial insights and polynomial-time algorithms for some restricted cases that help understanding the complexity of that problem. We also prove that the constrained parsimony haplotyping (CPH) problem is fixed parameter tractable by providing a parameterized algorithm that applies an interesting dynamic programming technique for solving the problem.

Keywords

Dependency Graph Haplotype Inference Heterozygous Site Haplotype Pair Perfect Phylogeny 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The international hapmap project. Nature 426, 789–796 (2003)Google Scholar
  2. 2.
    Bafna, V., Gusfield, D., Lancia, G., Yooseph, S.: Haplotyping as perfect phylogeny: A direct approach. Journal of Computational Biology 10, 323–340 (2003)CrossRefGoogle Scholar
  3. 3.
    Barzuza, T., Beckmann, J.S., Shamir, R., Pe’er, I.: Computational problems in perfect phylogeny haplotyping: Xor-genotypes and tag sNP’s. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 14–31. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Brown, D., Harrower, I.M.: A new integer programming formulation for the pure parsimony problem in haplotype analysis. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 254–265. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Damaschke, P.: Fast perfect phylogeny haplotype inference. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003. LNCS, vol. 2751, pp. 183–194. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Ding, Z., Filkov, V., Gusfield, D.: A linear-time algorithm for the perfect phylogeny haplotyping (pph) problem. Journal of Computational Biology 13, 522–553 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Eskin, E., Halperin, E., Karp, R.: Efficient reconstruction of haplotype structure via perfect phylogeny. Journal of Bioinformatics and Computational Biology 1, 1–20 (2003)CrossRefGoogle Scholar
  9. 9.
    Gramm, J., Nierhoff, T., Sharan, R., Tantau, T.: On the complexity of haplotyping via perfect phylogeny. In: Proceedings of RECOMB Satellite Workshop on Computational Methods for SNPs and Haplotypes (2004)Google Scholar
  10. 10.
    Gramm, J., Nierhoff, T., Sharan, R., Tantau, T.: Haplotyping with missing data via perfect path phylogenies. Discrete Applied Mathematics 155, 788–805 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Greenspan, G.: Geiger D. Model-based inference of haplotype block variation. In: Research in Computational Molecular Biology (RECOMB 2003), pp. 131–137 (2003)Google Scholar
  12. 12.
    Gusfield, D.: Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions (extended abstract). In: Proceedings of RECOMB, pp. 166–175 (2002)Google Scholar
  13. 13.
    Gusfield, D.: Haplotype inference by pure parsimony. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Gusfield, D., Orzack, S.H.: Haplotype inference. In: Aluru, S. (ed.) CRC Handbook on Bioinformatics (2005)Google Scholar
  15. 15.
    Gusfield, D., Song, Y., Wu, Y.: Algorithms for Imperfect Phylogeny Haplotyping (IPPH) with a Single Homoplasy or Recombination Event. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 152–164. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Halldorsson, B., Bafna, V., Edwards, N., Lipert, R., Yooseph, S., Istrail, S.: A survey of computational methods for determining haplotypes. In: Proceedings of RECOMB Satellite on Computational Methods for SNPs and Haplotype Inference, pp. 26–47 (2003)Google Scholar
  17. 17.
    Halperin, E., Eskin, E.: Haplotype reconstruction from genotype data using imperfect phylogeny. Bioinformatics 20, 1842–1849 (2004)CrossRefGoogle Scholar
  18. 18.
    Halperin, E., Karp, R.M.: Perfect phylogeny and haplotype assignment. In: Proceedings of RECOMB, pp. 10–19 (2004)Google Scholar
  19. 19.
    Hudson, R.: Gene genealogies and the coalescent process. Oxsford Survey of Evolutionary Biology 7, 1–44 (1990)Google Scholar
  20. 20.
    van Iersel, L., Keijsper, J., Kelk, S., Stougie, L.: Beaches of islands of tractability: Algorithms for parsimony and minimum perfect phylogeny haplotyping problems. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 80–91. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Kimmel, G., Shamir, R.: The incomplete perfect phylogeny haplotype problem. Journal of Bioinformatics and Comutational Biology 3, 359–384 (2005)CrossRefGoogle Scholar
  22. 22.
    Lancia, G., Pinotti, C., Rizzi, R.: Haplotyping population by pure parsimony: Complexity, exact and approximation algorithms. INFORMS Journal on Computing, special issue on Comutational Biology 16, 348–359 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lancia, G., Rizzi, R.: A polynomial case of the parsimony haplotyping problem. Operations Research Letters 34, 289–295 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rastas, P., Koivisto, M., Mannila, H., Ukkonen, E.: A hidden markov technique for haplotype reconstruction. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 140–151. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Satya, R.V., Mukherjee, A.: An optimal algorithm for perfect phylogeny haplotyping. Journal of Computational Biology 13(4), 897–928 (2006)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sharan, R., Halldorsson, B., Istrail, S.: Islands of tractability for parsimony haplotyping. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3, 303–311 (2006)CrossRefGoogle Scholar
  27. 27.
    Tavare, S.: Calibrating the clock: Using stochastic process to measure the rate of evolution. In: Lander, E., Waterman, M. (eds.) Calculating the Secrets of Life (1995)Google Scholar
  28. 28.
    Wang, L., Xu, L.: Haplotype inference by maximum parsimony. Bioinformatics 19, 1773–1780 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michael R. Fellows
    • 1
  • Tzvika Hartman
    • 2
  • Danny Hermelin
    • 3
  • Gad M. Landau
    • 3
    • 4
  • Frances Rosamond
    • 1
  • Liat Rozenberg
    • 3
  1. 1.The University of NewcastleCallaghanAustralia
  2. 2.GoogleTel-AvivUSA
  3. 3.Department of Computer ScienceUniversity of HaifaHaifaIsrael
  4. 4.Department of Computer and Information SciencePolytechnic UniversityNew YorkUSA

Personalised recommendations