The Structure of Level-k Phylogenetic Networks

  • Philippe Gambette
  • Vincent Berry
  • Christophe Paul
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5577)

Abstract

Evolution is usually described as a phylogenetic tree, but due to some exchange of genetic material, it can be represented as a phylogenetic network which has an underlying tree structure. The notion of level was recently introduced as a parameter on realistic kinds of phylogenetic networks to express their complexity and tree-likeness. We study the structure of level-k networks, and how they can be decomposed into level-k generators. We also provide a polynomial time algorithm which takes as input the set of level-k generators and builds the set of level-(k + 1) generators. Finally, with a simulation study, we evaluate the proportion of level-k phylogenetic networks among networks generated according to the coalescent model with recombination.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arenas, M., Posada, D.: Recodon: Coalescent Simulation of Coding DNA Sequences with Recombination, Migration and Demography. BMC Bioinformatics 8, 458 (2007)CrossRefGoogle Scholar
  2. 2.
    Arenas, M., Valiente, G., Posada, D.: Characterization of Reticulate Networks based on the Coalescent with Recombination. Molecular Biology and Evolution 25(12), 2517–2520 (2008)CrossRefGoogle Scholar
  3. 3.
    Byrka, J., Gawrychowski, P., Huber, K.T., Kelk, S.: Worst-case Optimal Approximation Algorithms for Maximizing Triplet Consistency within Phylogenetic Networks. To appear in Journal of Discrete Algorithms (2009)Google Scholar
  4. 4.
    Chan, H.-L., Jansson, J., Lam, T.-W., Yiu, S.-M.: Reconstructing an Ultrametric Galled Phylogenetic Network from a Distance Matrix. Journal of Bioinformatics and Computational Biology 4(4), 807–832 (2006)CrossRefMATHGoogle Scholar
  5. 5.
    Choy, C., Jansson, J., Sadakane, K., Sung, W.-K.: Computing the Maximum Agreement of Phylogenetic Networks. Theor. Comput. Sci. 335(1), 93–107 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cardona, G., Rosselló, F., Valiente, G.: Comparison of Tree-Child phylogenetic networks. To appear in IEEE/ACM Trans. on Comp. Biol. and Bioinf. (2009)Google Scholar
  7. 7.
    Engelfriet, J., van Oostrom, V.: Logical Description of Contex-Free Graph Languages. J. Comput. Syst. Sci. 55(3), 489–503 (1997)CrossRefMATHGoogle Scholar
  8. 8.
    Galtier, N.: A Model of Horizontal Gene Transfer and the Bacterial Phylogeny Problem. Systematic Biology 56, 633–642 (2007)CrossRefGoogle Scholar
  9. 9.
    Gambette, P.: Who is Who in Phylogenetic Networks: Articles, Authors and Programs, http://www.lirmm.fr/~gambette/PhylogeneticNetworks
  10. 10.
    Gioan, E., Paul, C.: Split Decomposition and Graph-Labelled Trees: Characterizations and Fully-Dynamic Algorithms for Totally Decomposable Graphs (submitted, 2009)Google Scholar
  11. 11.
    Gusfield, D., Bansal, V.: A Fundamental Decomposition Theory for Phylogenetic Networks and Incompatible Characters. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 217–232. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Gusfield, D., Eddhu, S., Langley, C.: Efficient Reconstruction of Phylogenetic Networks with Constrained Recombination. In: IEEE Computational Systems Bioinformatics Conference (CSB 2003), pp. 363–374 (2003)Google Scholar
  13. 13.
    Grant, V.: Plant Speciation, pp. 300–320. Columbia University Press (1971)Google Scholar
  14. 14.
    Hallett, M., Lagergren, J.: Efficient Algorithms for Lateral Gene Transfers Problems. In: International Conference on Research in Computational Molecular Biology (RECOMB 2001), pp. 141–148 (2001)Google Scholar
  15. 15.
    Hudson, R.R.: Properties of the Neutral Allele Model with Intragenic Recombination. Theoretical Population Biology 23, 183–201 (1983)CrossRefMATHGoogle Scholar
  16. 16.
    Huson, D.H.: Split Networks and Reticulate Networks. In: Gascuel, O., Steel, M. (eds.) Reconstructing Evolution, pp. 247–276. Oxford University Press, Oxford (2007)Google Scholar
  17. 17.
    van Iersel, L., Keijsper, J., Kelk, S., Stougie, L., Hagen, F., Boekhout, T.: Constructing Level-2 Phylogenetic Networks from Triplets. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 450–462. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    van Iersel, L., Kelk, S.: Constructing the Simplest Possible Phylogenetic Network from Triplets. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 472–483. Springer, Heidelberg (2008)Google Scholar
  19. 19.
    van Iersel, L., Kelk, S., Mnich, M.: Uniqueness, Intractability and Exact Algorithms: Reflections on Level-k Phylogenetic Network. To appear in Journal of Bioinformatics and Computational Biology (2009)Google Scholar
  20. 20.
    Jansson, J., Sung, W.-K.: Inferring a Level-1 Phylogenetic Network from a Dense Set of Rooted Triplets. Theor. Comput. Sci. 363(1), 60–68 (2006)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Kanj, I.A., Nakhleh, L., Than, C., Xia, G.: Seeing the Trees and Their Branches in the Network is Hard. Theor. Comput. Sci. 401, 153–164 (2008)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
  23. 23.
    Kaibel, V., Schwartz, A.: On the Complexity of Polytope Isomorphism Problems. Graphs and Combinatorics 19(2), 215–230 (2003)MathSciNetMATHGoogle Scholar
  24. 24.
    Linder, C.R., Rieseberg, L.H.: Reconstructing Patterns of Reticulate Evolution in Plants. American Journal of Botany 91(10), 1700–1708 (2004)CrossRefGoogle Scholar
  25. 25.
    Luks, E.M.: Isomorphism of Graphs of Bounded Valence Can be Tested in Polynomial Time. Journal of Computer and System Sciences 25(1), 42–65 (1982)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    MacLeod, D., Charlebois, R.L., Doolittle, W.F., Bapteste, E.: Deduction of Probable Events of Lateral Gene Transfer through Comparison of Phylogenetic Trees by Recursive Consolidation and Rearrangement. BMC Evol. Biol. 5, 27 (2005)CrossRefGoogle Scholar
  27. 27.
    Miller, G.L.: Graph Isomorphism, General Remarks. In: ACM Symposium on Theory of Computing (STOC 1977), pp. 143–150 (1977)Google Scholar
  28. 28.
    Morin, M.M., Moret, B.M.E.: NetGen: Generating Phylogenetic Networks with Diploid Hybrids. Bioinformatics 22(15), 1921–1923 (2006)CrossRefGoogle Scholar
  29. 29.
    Ma, B., Wang, L., Li, M.: Fixed Topology Alignment with Recombination. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448, pp. 174–188. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  30. 30.
    Nakhleh, L., Warnow, T., Linder, C.R., St. John, K.: Reconstructing Reticulate Evolution in Species - Theory and Practice. Journal of Computational Biology 12(6), 796–811 (2005)CrossRefGoogle Scholar
  31. 31.
    Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. Published electronically, http://www.research.att.com/~njas/sequences/
  32. 32.
    Semple, C., Steel, M.: Unicyclic Networks: Compatibility and Enumeration. IEEE/ACM Trans. on Comp. Biol. and Bioinf. 3, 398–401 (2004)Google Scholar
  33. 33.
    To, T.-H., Habib, M.: Level-k Phylogenetic Network Are Constructable from a Dense Triplet Set in Polynomial Time. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 275–288. Springer, Heidelberg (2009)Google Scholar
  34. 34.
    Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. In: ACM Symposium on Applied Computing (SAC 2001), pp. 46–50 (2001)Google Scholar
  35. 35.
    Zemlyachenko, V.N., Korneenko, N.M., Tyshkevich, R.I.: Graph Isomorphism Problem. Journal of Mathematical Sciences 29(4), 1426–1481 (1985)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Philippe Gambette
    • 1
  • Vincent Berry
    • 1
  • Christophe Paul
    • 1
  1. 1.Département informatiqueL.I.R.M.M., C.N.R.S. - Université Montpellier IIFrance

Personalised recommendations