Level-k Phylogenetic Networks Are Constructable from a Dense Triplet Set in Polynomial Time

  • Thu-Hien To
  • Michel Habib
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5577)

Abstract

For a given dense triplet set \(\mathcal{T}\), there exist two natural questions [7]: Does there exist any phylogenetic network consistent with \(\mathcal{T}\)? In case such networks exist, can we find an effective algorithm to construct one? For cases of networks of levels k = 0, 1 or 2, these questions were answered in [1,6,7,8,10] with effective polynomial algorithms. For higher levels k, partial answers were recently obtained in [11] with an \(O(|\mathcal{T}|^{k+1})\) time algorithm for simple networks. In this paper, we give a complete answer to the general case, solving a problem proposed in [7]. The main idea of our proof is to use a special property of SN-sets in a level-k network. As a consequence, for any fixed k, we can also find a level-k network with the minimum number of reticulations, if one exists, in polynomial time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a Tree from Lowest Common Ancestors with an Application to the Optimization of Relational Expressions. SIAM Journal on Computing 10(3), 405–421 (1981)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Byrka, J., Gawrychowski, P., Huber, K.T., Kelk, S.: Worst-case optimal approximation algorithms for maximizing triplet consistency within phylogenetic networks (2008) arXiv:0710.3258v3 [q-bio.PE]Google Scholar
  3. 3.
    Choy, C., Jansson, J., Sadakane, K., Sung, W.-K.: Computing the Maximum Agreement of Phylogenetic Networks. Theoretical Computer Science 355(1), 93–107 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Gasieniec, L., Jansson, J., Lingas, A., Ostlin, A.: Inferring ordered trees from local constraints. In: CATS 1998, vol. 20(3), pp. 67–79 (1998)Google Scholar
  5. 5.
    Henzinger, M.R., King, V., Warnow, T.: Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology. Algorithmica 24(1), 1–13 (1999)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Jansson, J., Nguyen, N.B., Sung, W.-K.: Algorithms for Combining Rooted Triplets into a Galled Phylogenetic Network. SIAM Journal on Computing 35(5), 1098–1121 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Jansson, J., Sung, W.-K.: Inferring a Level-1 Phylogenetic Network from a Dense Set of Rooted Triplets. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 462–471. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Jansson, J., Sung, W.-K.: Inferring a Level-1 Phylogenetic Network from a Dense Set of Rooted Triplets. Theoretical Computer Science 361(1), 60–68 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer, Heidelberg (2003)MATHGoogle Scholar
  10. 10.
    van Iersel, L., Keijsper, J., Kelk, S., Stougie, L., Hagen, F., Boekhout, T.: Constructing level-2 phylogenetic networks from triplets. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 450–462. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    van Iersel, L., Kelk, S.: Constructing the Simplest Possible Phylogenetic Network from Triplets. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 472–483. Springer, Heidelberg (2008)Google Scholar
  12. 12.
    van Iersel, L., Kelk, S., Mnich, M.: Uniqueness, Intractability and Exact Algorithms: Reflections on level-k Phylogenetic Networks. JBCB (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Thu-Hien To
    • 1
  • Michel Habib
    • 1
  1. 1.LIAFA, CNRS and University Paris DiderotParis 7France

Personalised recommendations