Maximum Motif Problem in Vertex-Colored Graphs

  • Riccardo Dondi
  • Guillaume Fertin
  • Stéphane Vialette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5577)


Searching for motifs in graphs has become a crucial problem in the analysis of biological networks. In this context, different graph motif problems have been considered [13,7,5]. Pursuing a line of research pioneered by Lacroix et al. [13], we introduce in this paper a new graph motif problem: given a vertex colored graph G and a motif \(\mathcal{M}\), where a motif is a multiset of colors, find a maximum cardinality submotif \(\mathcal{M}' \subseteq \mathcal{M}\) that occurs as a connected motif in G. We prove that the problem is APX-hard even in the case where the target graph is a tree of maximum degree 3, the motif is actually a set and each color occurs at most twice in the tree. Next, we strengthen this result by proving that the problem is not approximable within factor \(2^{\rm {log^{\delta} n}}\), for any constant δ< 1, unless NPDTIMEclass(2POLY log n). We complement these results by presenting two fixed-parameter algorithms for the problem, where the parameter is the size of the solution. Finally, we give exact fast exponential-time algorithms for the problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Yuster, R., Zwick, U.: Color coding. Journal of the ACM 42(4), 844–856 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Betzler, N., Fellows, M.R., Komusiewicz, C., Niedermeier, R.: Parameterized algorithms and hardness results for some graph motif problems. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 31–43. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bruckner, S., Hüffner, F., Karp, R.M., Shamir, R., Sharan, R.: Topology-free querying of protein interaction networks. In: Batzoglou, S. (ed.) Proc. 13th Annual International Conference on Computational Molecular Biology (RECOMB 2009). LNCS, vol. 5541, pp. 74–89. Springer, Heidelberg (2009)Google Scholar
  4. 4.
    Diestel, R.: Graph theory, 2nd edn. Graduate texts in Mathematics, vol. 173. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  5. 5.
    Dondi, R., Fertin, G., Vialette, S.: Weak pattern matching in colored graphs: Minimizing the number of connected components. In: Proc. 10th Italian Conference on Theoretical Computer Science (ICTCS), Roma, Italy, pp. 27–38. World Scientific, Singapore (2007)Google Scholar
  6. 6.
    Downey, R., Fellows, M.: Parameterized complexity. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    Fellows, M., Fertin, G., Hermelin, D., Vialette, S.: Sharp tractability borderlines for finding connected motifs in vertex-colored graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 340–351. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolutionary trees. Discrete Applied Mathematics 71, 153–169 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jiang, T., Li, M.: On the approximation of shortest common supersequences and longest common subsequences. SIAM Journal on Computing 24, 1122–1139 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Karger, D., Motwani, R., Ramkumar, G.D.S.: On approximating the longest path in a graph. SIAM Journal on Computing 24, 1122–1139 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R., Ideker, T.: Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proceedings of the National Academy of Sciences 100(20), 11394–11399 (2003)CrossRefGoogle Scholar
  12. 12.
    Koyutürk, M., Grama, A., Szpankowski, W.: Pairwise local alignment of protein interaction networks guided by models of evolution. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 48–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Lacroix, V., Fernandes, C.G., Sagot, M.-F.: Motif search in graphs: application to metabolic networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 3(4), 360–368 (2006)CrossRefGoogle Scholar
  14. 14.
    Niedermeier, R.: Invitation to fixed parameter algorithms. Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  15. 15.
    Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation and complexity classes. Journal of Computer and System Sciences 43, 425–440 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient algorithms for detecting signaling pathways in protein interaction networks. Journal of Computational Biology 13, 133–144 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sharan, R., Ideker, T., Kelley, B., Shamir, R., Karp, R.M.: Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. In: Proc. 8th annual international conference on Computational molecular biology (RECOMB), San Diego, California, USA, pp. 282–289. ACM Press, New York (2004)Google Scholar
  18. 18.
    Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., Karp, R.M., Ideker, T.: Conserved patterns of protein interaction in multiple species. Proc. Natl Acad. Sci. USA 102(6), 1974–1979 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Riccardo Dondi
    • 1
  • Guillaume Fertin
    • 2
  • Stéphane Vialette
    • 3
  1. 1.Dipartimento di Scienze dei Linguaggi, della Comunicazione e degli Studi CulturaliUniversità degli Studi di BergamoBergamoItaly
  2. 2.Laboratoire d’Informatique de Nantes-Atlantique (LINA), UMR CNRS 6241Université de NantesNantes Cedex 3France
  3. 3.IGM-LabInfo, CNRS UMR 8049Université Paris-EstMarne-la-ValléeFrance

Personalised recommendations