Deconstructing Intractability: A Case Study for Interval Constrained Coloring

  • Christian Komusiewicz
  • Rolf Niedermeier
  • Johannes Uhlmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5577)

Abstract

The NP-hard Interval Constrained Coloring problem appears in the interpretation of experimental data in biochemistry dealing with protein fragments. Given a set of m integer intervals in the range 1 to n and a set of m associated multisets of colors (specifying for each interval the colors to be used for its elements), one asks whether there is a “consistent” coloring for all integer points from { 1, ..., n } that complies with the constraints specified by the color multisets. We initiate a study of Interval Constrained Coloring from the viewpoint of combinatorial algorithmics, trying to avoid polyhedral and randomized rounding methods as used in previous work. To this end, we employ the method of systematically deconstructing intractability. It is based on a thorough analysis of the known NP-hardness proof for Interval Constrained Coloring. In particular, we identify numerous parameters that naturally occur in the problem and strongly influence the problem’s practical solvability. Thus, we present several positive (fixed-parameter) tractability results and, moreover, identify a large spectrum of combinatorial research challenges for Interval Constrained Coloring.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Althaus, E., Canzar, S., Elbassioni, K., Karrenbauer, A., Mestre, J.: Approximating the interval constrained coloring problem. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 210–221. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Althaus, E., Canzar, S., Emmett, M.R., Karrenbauer, A., Marshall, A.G., Meyer-Baese, A., Zhang, H.: Computing H/D-exchange speeds of single residues from data of peptic fragments. In: Proceedings of the 23rd ACM Symposium on Applied Computing (SAC 2008), pp. 1273–1277. ACM Press, New York (2008)CrossRefGoogle Scholar
  3. 3.
    Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). Journal of Algorithms 54(2), 168–204 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chang, J., Erlebach, T., Gailis, R., Khuller, S.: Broadcast scheduling: Algorithms and complexity. In: Proceedings of the 19th ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 473–482. ACM-SIAM (2008)Google Scholar
  5. 5.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  6. 6.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)MATHGoogle Scholar
  7. 7.
    Lenstra, H.W.: Integer programming with a fixed number of variables. Mathematics of Operations 8, 538–548 (1983)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications, vol. 31. Oxford University Press, Oxford (2006)CrossRefMATHGoogle Scholar
  9. 9.
    Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–208. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christian Komusiewicz
    • 1
  • Rolf Niedermeier
    • 1
  • Johannes Uhlmann
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations