Hitting Time Analysis for Stochastic Communication

  • Paul Bogdan
  • Radu Marculescu
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 3)


This paper investigates the benefits of a recently proposed communication approach, namely on-chip stochastic communication, and proposes an analytical model for computing its mean hitting time. Towards this end, we model the stochastic communication as a branching process taking place on a finite mesh and estimate the mean number of communication rounds.


Network-on-Chip reliable communication hitting time 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, et al.: Many Random Walks Are Faster Than One. In: 20th ACM SPAA, Germany (2008)Google Scholar
  2. 2.
    Bailey, N.T.J.: The Mathematical Theory of Infectious Diseases (1975)Google Scholar
  3. 3.
    Bar-Yossef, Z., Gurevich, M.: Random sampling from a search engine’s index. In: WWW (2006)Google Scholar
  4. 4.
    Bogdan, P., Dumitras, T., Marculescu, R.: Stochastic Communication: A New Paradigm for Fault-Tolerant Networks-on-Chip. In: Hindawi VLSI-Design (Feburary 2007)Google Scholar
  5. 5.
    Broder, A., Karlin, A.R.: Bounds on Cover Time. J. of Theor. Prob. 2(1) (1989)Google Scholar
  6. 6.
    Bui, A., Sohier, D.: On Time Analysis of Random Walk Based Token Circulation Algorithms. In: Ramos, F.F., Larios Rosillo, V., Unger, H. (eds.) ISSADS 2005. LNCS, vol. 3563, pp. 63–71. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Chandra, et al.: The Electrical Resistance of a Graph Captures its Commute and Cover Times. In: ACM Symp. on Theor. of Computing (1989)Google Scholar
  8. 8.
    Constantinescu, C.: Trends and Challenges in VLSI Circuit Reliability. IEEE Micro (2003)Google Scholar
  9. 9.
    Cooper, C., Frieze, A., Radzik, T.: Multiple Random Walks in Random Regular Graphs. CMU Technical Report (May 2008)Google Scholar
  10. 10.
    Doyle, P.G., Snell, L.J.: Random Walks and Electrical Networks, M.A.A (1984)Google Scholar
  11. 11.
    Eugster, et al.: Epidemic information dissemination in distributed systems. Computer (2004)Google Scholar
  12. 12.
    Gkantsidis, A., et al.: Random walks in peer-to-peer networks. In: INFOCOM (2004)Google Scholar
  13. 13.
    Solari, H.G., Natiello, M.A.: Poisson approximation to density dependent stochastic processes. A numerical implementation and test. Växjö Univ. Press., Math. Modelling (2003)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Paul Bogdan
    • 1
  • Radu Marculescu
    • 1
  1. 1.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations