Advertisement

DSSZ-MC – A Tool for Symbolic Analysis of Extended Petri Nets

  • Monika Heiner
  • Martin Schwarick
  • Alexej Tovchigrechko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5606)

Abstract

DSSZ-MC supports the symbolic analysis of bounded place/ transition Petri nets extended by read, inhibitor, equal, and reset arcs. No previous knowledge of the precise boundedness degree is required. It contains tools for the efficient analysis of standard properties (boundedness, liveness, reversibility) and CTL model checking, built on an object-oriented implementation of Zero-suppressed Binary Decision Diagrams and Interval Decision Diagrams. The main features are saturation-based state space generation, analysis of strongly connected components, dead state analysis with trace generation, and CTL model checking by limited backward reachability analysis. The tool is available for Windows, Linux, and Mac/OS.

Keywords

Model Check Reachability Analysis Symbolic Analysis Command Line Tool Model Check Tool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BKK94]
    Bause, F., Kemper, P., Kritzinger, P.: Abstract Petri Net Notation. Technical report, Univ. Dortmund, CS Dep. (1994)Google Scholar
  2. [Bry86]
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. on Computers C-35(8), 677–691 (1986)CrossRefzbMATHGoogle Scholar
  3. [CGP01]
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge (1999) (third printing, 2001)Google Scholar
  4. [CS03]
    Ciardo, G., Siminiceanu, R.: Structural symbolic CTL model checking of asynchronous systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 40–53. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. [Fra08]
    Franzke, A.: A concept for redesigning Charlie. Technical report, BTU Cottbus, Dep. of CS (2008)Google Scholar
  6. [GH06]
    Gilbert, D., Heiner, M.: From Petri nets to differential equations - an integrative approach for biochemical network analysis. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 181–200. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. [HGD08]
    Heiner, M., Gilbert, D., Donaldson, R.: Petri nets in systems and synthetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. [HRS08]
    Heiner, M., Richter, R., Schwarick, M.: Snoopy - a tool to design and animate/simulate graph-based formalisms. In: Proc. PNTAP 2008, associated to SIMUTools 2008. ACM digital library, New York (2008)Google Scholar
  9. [KJH05]
    Koch, I., Junker, B.H., Heiner, M.: Application of Petri Net Theory for Modeling and Validation of the Sucrose Breakdown Pathway in the Potato Tuber. Bioinformatics 21(7), 1219–1226 (2005)CrossRefGoogle Scholar
  10. [MC99]
    Miner, A.S., Ciardo, G.: Efficient reachability set generation and storage using decision diagrams. In: Donatelli, S., Kleijn, J. (eds.) ICATPN 1999. LNCS, vol. 1639, pp. 6–25. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. [Min93]
    Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: Proc. 30th ACM/IEEE Design Automation Conference (DAC), pp. 272–277. ACM Press, New York (1993)CrossRefGoogle Scholar
  12. [Noa99]
    Noack, A.: A ZBDD package for efficient model checking of Petri nets. Technical report, BTU Cottbus, Dep. of CS (1999) (in German)Google Scholar
  13. [PW03]
    Priese, L., Wimmel, H.: Theoretical Informatics - Petri Nets. Springer, Heidelberg (2003) (in German)zbMATHGoogle Scholar
  14. [Rid97]
    Ridder, H.: Analysis of Petri Net Models with Decision Diagrams. PhD thesis, University Koblenz-Landau (1997) (in German)Google Scholar
  15. [Sch08]
    Schwarick, M.: Transient Analysis of Stochastic Petri Nets With Interval Decision Diagrams. In: Proc. 15th German Workshop on Algorithms and Tools for Petri Nets (AWPN 2008), September 2008. CEUR Workshop Proceedings, vol. 380, pp. 43–48. CEUR-WS.org (2008)Google Scholar
  16. [SSE03]
    Schröter, C., Schwoon, S., Esparza, J.: The Model Checking Kit. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 463–472. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. [ST98]
    Strehl, K., Thiele, L.: Symbolic model checking using interval diagram techniques. Technical report, Computer Engineering and Networks Lab (TIK), Swiss Federal Institute of Technology (ETH) Zurich (1998)Google Scholar
  18. [Tov08]
    Tovchigrechko, A.: Model Checking Using Interval Decision Diagrams. PhD thesis, BTU Cottbus, Dep. of CS (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Monika Heiner
    • 1
  • Martin Schwarick
    • 1
  • Alexej Tovchigrechko
    • 1
  1. 1.Computing Science InstituteBrandenburg University of Technology, Email:dsszmc@informatik.tu-cottbus.deCottbusGermany

Personalised recommendations