Norman Carey and David Clampitt observed in [4] that each region has two well-formed scales as its prefixes. If one looks at this finding from the viewpoint of word theory, one observes that regions are central words and the two prefixes are their independent periods. More precisely, each region, understood as a word in a two-letter alphabet, contains two distinct prefixes, both of which represent well-formed scales. One period is a special standard word, and the other period is a non-special standard word. Thomas Noll proposed in [13] to generalize the authentic Ionian mode through special standard words. He showed that the property of divider incidence characterizes these words among their conjugates. Thus there are two parallel lines of generalization which can be further enriched by observations from [7], [8], as well as by further combinatorial connections between central and standard words.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berstel, J., de Luca, A.: Sturmian words, Lyndon words and trees. Theoretical Computer Science 178, 171–203 (1997)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Berstel, J., Lauve, A., Reutenauer, C., Saliola, F.V.: Combinatorics on words: Christoffel words and repetitions in words. CRM Monograph Series, vol. 27. American Mathematical Society, Providence (2009)MATHGoogle Scholar
  3. 3.
    Berthé, V., de Luca, A.: Christophe Reutenauer. On an involution of Christoffel words and Sturmian morphisms. European Journal of Combinatorics 29(2), 535–553 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Carey, N., Clampitt, D., Regions: A theory of tonal spaces in early medieval treatises. Journal of Music Theory 40(1), 113–147 (1996)CrossRefGoogle Scholar
  5. 5.
    Carey, N., Clampitt, D.: Aspects of well-formed scales. Music Theory Spectrum 11(2), 187–206 (1989)CrossRefGoogle Scholar
  6. 6.
    Clampitt, D., Noll, T.: Modes, the height-width duality, and divider incidence. In: Society for Music Theory national conference, Nashville, TN (2008)Google Scholar
  7. 7.
    Clampitt, D.: Double neighbor polarity (unpublished paper) (2008)Google Scholar
  8. 8.
    Clampitt, D.: Sensitive intervals: major third analogues in standard well-formed words. In: Workshop on Mathematical Music Theory, South Bristol, ME (2008)Google Scholar
  9. 9.
    Clampitt, D., Noll, T.: Regions within enveloping standard modes (unpublished paper) (2009)Google Scholar
  10. 10.
    Domínguez, M., Clampitt, D., Noll, T.: Well-formed scales, maximally even sets and Christoffel words. In: Proceedings of the MCM 2007, Berlin, Staatliches Institut für Musikforschung (2007)Google Scholar
  11. 11.
    Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)CrossRefMATHGoogle Scholar
  12. 12.
    Kassel, C.: From Sturmian morphisms to the braid group B 4. In: The Workshop on Braid Groups and Applications, Banff International Research Station (2004)Google Scholar
  13. 13.
    Noll, T.: Ionian theorem. Journal of Mathematics and Music 3(3) (to appear, 2009)Google Scholar
  14. 14.
    Noll, T., Clampitt, D., Domínguez, M.: What Sturmian morphisms reveal about musical scales and tonality. In: Proceedings of the WORDS 2007 Conference, Marseille (2007), http://iml.univ-mrs.fr/words2007/
  15. 15.
    Singler, F.: Zur Dualität zwischen doppelter Periodizität und binärer Intervall-Struktur in der Theorie der Tonregionen. Thesis (final paper). Hochschule für Musik und Theater Felix Mendelssohn Bartholdy, Leipzig (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • David Clampitt
    • 1
  • Thomas Noll
    • 2
  1. 1.Ohio State University, School of MusicUSA
  2. 2.Escola Superior de Musica de CatalunyaBarcelonaSpain

Personalised recommendations