Adapting Autonomic Electronic Institutions to Heterogeneous Agent Societies

  • Eva Bou
  • Maite López-Sánchez
  • J. A. Rodríguez-Aguilar
  • Jaime Simão Sichman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5368)


Electronic institutions (EIs) define the rules of the game in agent societies by fixing what agents are permitted and forbidden to do and under what circumstances. Autonomic Electronic Institutions (AEIs) adapt their rules to comply with their goals when regulating agent societies composed of varying populations of self-interested agents. We present a self-adaptation model based on Case-Based Reasoning (CBR) that allows an AEI to yield a dynamical answer to changing circumstances. In order to demonstrate adaptation empirically, we consider a traffic control scenario populated by heterogeneous agents. Within this setting, we demonstrate statistically that an AEI is able to adapt to different heterogeneous agent populations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Esteva, M.: Electronic Institutions: from specification to development, vol. 19. IIIA PhD Monography (2003)Google Scholar
  2. 2.
    North, D.C.: Institutions, Institutional Change and Economics Perfomance. Cambridge U. P (1990)Google Scholar
  3. 3.
    Bou, E., López-Sánchez, M., Rodríguez-Aguilar, J.A.: Adaptation of autonomic electronic institutions through norms and institutional agents. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 300–319. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer 36(1), 41–50 (2003)CrossRefGoogle Scholar
  5. 5.
    Norman, T.J., Preece, A., Chalmers, S., Jennings, N.R., Luck, M., Dang, V., Nguyen, T., Deora, V., Shao, J., Gray, A., Fiddian, N.: Conoise: Agent-based formation of virtual organisations. In: Research and Development in Intelligent SystemsXX: Proceedings of AI 2003, the Twenty-third SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, pp. 353–366. Springer, Heidelberg (2003); 353–366 Best Paper Award at AI-2003, ©Springer VerlagGoogle Scholar
  6. 6.
    Excelente-Toledo, C.B., Jennings, N.R.: The dynamic selection of coordination mechanisms. Autonomous Agents and Multi-Agent Systems 9(1-2), 55–85 (2004)CrossRefGoogle Scholar
  7. 7.
    Verhagen, H.: Norm Autonomous Agents. PhD thesis, Stockholm University (2000)Google Scholar
  8. 8.
    Sen, S., Airiau, S.: Emergence of norms through social learning. In: IJCAI, pp. 1507–1512 (2007)Google Scholar
  9. 9.
    Sierra, C., Sabater, J., Agustí, J., Garcia, P.: Integrating evolutionary computing and the sadde methodology. In: AAMAS 2003: Proceedings of the second international joint conference on Autonomous agents and multiagent systems, pp. 1116–1117. ACM Press, New York (2003)CrossRefGoogle Scholar
  10. 10.
    Artikis, A., Kaponis, D., Pitt, J.: Dynamic Specifications of Norm-Governed Systems. In: Multi-Agent Systems: Semantics and Dynamics of Organisational Models. IGI Global (2009)Google Scholar
  11. 11.
    Kota, R., Gibbins, N., Jennings, N.: Decentralised structural adaptation in agent organisations. In: Vouros, G., Artikis, A., Stathis, K., Pitt, J. (eds.) OAMAS 2008. LNCS (LNAI), vol. 5368. Springer, Heidelberg (2008)Google Scholar
  12. 12.
    Hübner, J.F., Sichman, J.S., Boissier, O.: Using the \(\mathcal{M}\)oise+ for a cooperative framework of mas reorganisation. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS, vol. 3171, pp. 506–515. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Gâteau, B., Boissier, O., Khadraoui, D., Dubois, E.: Moiseinst: An organizational model for specifying rights and duties of autonomous agents. In: Gleizes, M.P., Kaminka, G.A., Nowé, A., Ossowski, S., Tuyls, K., Verbeeck, K. (eds.) EUMAS, Koninklijke Vlaamse Academie van Belie voor Wetenschappen en Kunsten, pp. 484–485 (2005)Google Scholar
  14. 14.
    van der Vecht, B., Dignum, F., Meyer, J.J.C., Neef, M.: A dynamic coordination mechanism using adjustable autonomy. In: Coordination, Organization, Institutions and Norms in agent systems (COIN@Durham 2007). Co-held in Multi-Agent Logics, Languages, and Organisations Federated Workshop, Durham, UK (2007)Google Scholar
  15. 15.
    Hoogendoorn, M.: Adaptation of organizational models for multi-agent systems based on max flow networks. In: Veloso, M.M. (ed.) IJCAI, pp. 1321–1326 (2007)Google Scholar
  16. 16.
    Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K.: Mason: A new multi-agent simulation toolkit. In: Proceedings of the 2004 SwarmFest Workshop, p. 8 (2004)Google Scholar
  17. 17.
    Camurri, M., Mamei, M., Zambonelli, F.: Urban traffic control with co-fields. In: Proc. of E4MAS Workshop at AAMAS 2006, pp. 11–25 (2006)Google Scholar
  18. 18.
    Bazzan, A.L.C., de Oliveira, D., Klügl, F., Nagel, K.: Effects of co-evolution in a complex traffic network. In: Proceedings of the AAMAS 2007 Workshop on Adaptive and Learning Agents (ALAg 2007) (2007)Google Scholar
  19. 19.
    Ros, R., Veloso, M.: Executing Multi-Robot Cases through a Single Coordinator. In: Proc. of Autonomous Agents and Multiagent Systems, pp. 1264–1266 (2007)Google Scholar
  20. 20.
    Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI Commun. 7(1), 39–59 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Eva Bou
    • 1
  • Maite López-Sánchez
    • 2
  • J. A. Rodríguez-Aguilar
    • 1
  • Jaime Simão Sichman
    • 3
  1. 1.IIIA, Artificial Intelligence Research InstituteCSIC, Spanish National Research Council, CampusBellaterraSpain
  2. 2.WAI, Volume Visualization and Artificial Intelligence, MAiA Dept.Universitat de BarcelonaSpain
  3. 3.LTI, Intelligent Techniques Laboratory, Computer Engineering DepartmentUniversity of São PauloBrazil

Personalised recommendations