Advertisement

Tyrolean Termination Tool 2

  • Martin Korp
  • Christian Sternagel
  • Harald Zankl
  • Aart Middeldorp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5595)

Abstract

This paper describes the second edition of the Tyrolean Termination Tool—a fully automatic termination analyzer for first-order term rewrite systems. The main features of this tool are its (non-)termination proving power, its speed, its flexibility due to a strategy language, and the fact that the source code of the whole project is freely available. The clean design together with a stand-alone OCaml library for term rewriting, make it a perfect starting point for other tools concerned with rewriting as well as experimental implementations of new termination methods.

Keywords

term rewriting termination automation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of rewrite systems. Journal of Automated Reasoning 40(2-3), 195–220 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: Maximal termination. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 110–125. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Geser, A., Hofbauer, D., Waldmann, J., Zantema, H.: On tree automata that certify termination of left-linear term rewriting systems. Information and Computation 205(4), 512–534 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: Combining techniques for automated termination proofs. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hirokawa, N., Middeldorp, A.: Uncurrying for termination. In: Kesner, D., van Raamsdonk, F., Stehr, M.O. (eds.) HOR 2006, pp. 19–24 (2006)Google Scholar
  10. 10.
    Hirokawa, N., Middeldorp, A.: Tyrolean Termination Tool: Techniques and features. Information and Computation 205(4), 474–511 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hirokawa, N., Middeldorp, A., Zankl, H.: Uncurrying for termination. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 667–681. Springer, Heidelberg (2008)Google Scholar
  12. 12.
    Hofbauer, D., Waldmann, J.: Termination of string rewriting with matrix interpretations. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 328–342. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Koprowski, A., Waldmann, J.: Arctic termination ... below zero. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 202–216. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Korp, M., Middeldorp, A.: Match-bounds revisited. Information and Computation (2009), doi:10.1016/j.ic.2009.02.010Google Scholar
  15. 15.
    Moser, G., Schnabl, A., Waldmann, J.: Complexity analysis of term rewriting based on matrix and context dependent interpretations. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2008. DROPS, vol. 1762, pp. 304–315. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Dagstuhl (2008)Google Scholar
  16. 16.
    Moser, G., Schnabl, A.: Proving quadratic derivational complexities using context dependent interpretations. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 276–290. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  18. 18.
    Payet, É.: Loop detection in term rewriting using the eliminating unfoldings. Theoretical Computer Science 403(2-3), 307–327 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. Journal of Symbolic Computation 2(3), 293–304 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sato, H., Winkler, S., Kurihara, M., Middeldorp, A.: Multi-completion with termination tools (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 306–312. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Sternagel, C., Middeldorp, A.: Root-labeling. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 336–350. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Thiemann, R.: The DP Framework for Proving Termination of Term Rewriting. PhD thesis, RWTH Aachen, Available as technical report AIB-2007-17 (2007)Google Scholar
  23. 23.
    Thiemann, R., Sternagel, C.: Loops under strategies. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 17–31. Springer, Heidelberg (2009)Google Scholar
  24. 24.
    Zankl, H., Hirokawa, N., Middeldorp, A.: KBO orientability. Journal of Automated Reasoning (2009), doi:10.1007/s10817-009-9131-zGoogle Scholar
  25. 25.
    Zankl, H., Middeldorp, A.: Nontermination of string rewriting using SAT. In: Hofbauer, D., Serebrenik, A. (eds.) WST 2007, pp. 56–59 (2007)Google Scholar
  26. 26.
    Zankl, H., Middeldorp, A.: Increasing interpretations. Annals of Mathematics and Artificial Intelligence (to appear, 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Martin Korp
    • 1
  • Christian Sternagel
    • 1
  • Harald Zankl
    • 1
  • Aart Middeldorp
    • 1
  1. 1.Institute of Computer ScienceUniversity of Innsbruck, Email: ttt2@informatik.uibk.ac.atInnsbruckAustria

Personalised recommendations