Advertisement

A Statistical Reduced-Reference Approach to Digital Image Quality Assessment

  • Krzysztof Okarma
  • Piotr Lech
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5337)

Abstract

In the paper a fast method of the digital image quality estimation is proposed. Our approach is based on the Monte Carlo method applied for some classical and modern full-reference image quality assessment methods, such as Structural Similarity and SVD-based measure. Obtained results are compared to the effects achieved using the full analysis techniques. Significant reduction of the number of analysed pixels or blocks leads to fast and efficient estimation of image quality especially in low performance systems where the processing speed is much more important than the accuracy of the quality assessment.

Keywords

image quality assessment Monte Carlo method statistical image analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beghdadi, A., Pesquet-Popescu, B.: A New Image Distortion Measure Based on Wavelet Decomposition. In: Proc. 7th Int. Symp. Signal Processing and Its Applications, Paris, France, pp. 485–488 (2003)Google Scholar
  2. 2.
    Bovik, A., Liu, S.: DCT-domain Blind Measurement of Blocking Artifacts in DCT-Coded Images. In: Proc. Int. Conf. Acoustics, Speech and Signal Processing, Salt Lake City, USA, pp. 1725–1728 (2001)Google Scholar
  3. 3.
    Carnec, M., Le Callet, P., Barba, P.: An Image Quality Assessment Method Based on Perception of Structural Information. In: Proc. Int. Conf. Image Processing, Barcelona, Spain, vol. 2, pp. 185–188 (2003)Google Scholar
  4. 4.
    Chen, D., Odobez, J.-M.: Sequential Monte Carlo Video Text Segmentation. In: International Conference on Image Processing ICIP 2003, vol. 3, pp. 21–24. IEEE Press, New York (2003)Google Scholar
  5. 5.
    Eskicioglu, A., Fisher, P., Chen, S.: Image Quality Measures and Their Performance. IEEE Trans. Comm. 43(12), 2959–2965 (1995)CrossRefGoogle Scholar
  6. 6.
    Eskicioglu, A.: Quality Measurement for Monochrome Compressed Images in the Past 25 Years. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process., Istanbul, Turkey, pp. 1907–1910 (2000)Google Scholar
  7. 7.
    Fearnhead, P.: Computational Methods for Complex Stochastic Systems: A Review of Some Alternatives to MCMC. Statistics and Computing 18(2), 151–171 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Girshtel, E., Slobodyan, V., Weissman, J., Eskicioglu, A.: Comparison of Three Full–Reference Color Image Quality Measures. In: Proc. SPIE of 18th IS&T/SPIE Annual Symposium on Electronic Imaging, Image Quality and System Performance, San Jose, CA, vol. 6059 (2006) doi:10.1117/12.644226Google Scholar
  9. 9.
    Li, X.: Blind Image Quality Assessment. In: Proc. IEEE Int. Conf. Image Proc., pp. 449–452 (2002)Google Scholar
  10. 10.
    Marziliano, P., Dufaux, F., Winkler, S., Ebrahimi, T.: A No-Reference Perceptual Blur Metric. In: Proc. IEEE Int. Conf. Image Processing, Rochester, USA, pp. 57–60 (2002)Google Scholar
  11. 11.
    Meesters, L., Martens, J.-B.: A Single-Ended Blockiness Measure for JPEG-Coded Images. Signal Processing 82(3), 369–387 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Ong, E.-P., Lin, L.W., Yang, Z., Yao, S., Pan, F., Jiang, L., Moschetti, F.: A No-Reference Quality Metric for Measuring Image Blur. In: Proc. 7th Int. Symp. Signal Processing and Its Applications, Paris, France, pp. 469–472 (2003)Google Scholar
  13. 13.
    Okarma, K., Lech, P.: Monte Carlo Based Algorithm for Fast Preliminary Video Analysis. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 790–799. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Rubinstein, R.Y.: Simulation and the Monte Carlo Method. Wiley, Chichester (1981)CrossRefzbMATHGoogle Scholar
  15. 15.
    Shnayderman, A., Gusev, A., Eskicioglu, A.: A Multidimensional Image Quality Measure Using Singular Value Decomposition. Proc. SPIE Image Quality and Syst. Perf. 5294(1), 82–92 (2003)CrossRefGoogle Scholar
  16. 16.
    Shnayderman, A., Gusev, A., Eskicioglu, A.: An SVD-Based Gray-Scale Image Quality Measure for Local and Global Assessment. IEEE Trans. Image Processing 15(2), 422–429 (2006)CrossRefGoogle Scholar
  17. 17.
    Van der Weken, D., Nachtegael, M., Kerre, E.: A New Similarity Measure for Image Processing. Journal of Computational Methods in Sciences and Engineering 3(2), 209–222 (2003)zbMATHGoogle Scholar
  18. 18.
    Wang, Z., Bovik, A.: A Universal Image Quality Index. IEEE Signal Processing Letters 9(3), 81–84 (2002)CrossRefGoogle Scholar
  19. 19.
    Wang, Z., Bovik, A., Evans, B.: Blind Measurement of Blocking Artifacts in Images. In: Proc. IEEE Int. Conf. Image Processing, pp. 981–984 (2000)Google Scholar
  20. 20.
    Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image Quality Assessment: From Error Measurement to Structural Similarity. IEEE Trans. Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  21. 21.
    Wang, Z., Sheikh, H., Bovik, A.: No-Reference Perceptual Quality Assessment of JPEG Compressed Images. In: Proc. IEEE Int. Conf. Image Processing, Rochester, USA, pp. 477–480 (2002)Google Scholar
  22. 22.
    Wang, Z., Simoncelli, E.: Reduced-Reference Image Quality Assessment using a Wavelet-Domain Natural Image Statistic Model. In: Proc. Human Vision and Electronic Imaging Conference, Proceedings of SPIE, San Jose, USA, vol. 5666, pp. 149–159 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Krzysztof Okarma
    • 1
  • Piotr Lech
    • 1
  1. 1.Faculty of Electrical Engineering Chair of Signal Processing and Multimedia EngineeringSzczecin University of TechnologySzczecinPoland

Personalised recommendations