Complex Time-Delay Systems pp 263-296

Part of the Understanding Complex Systems book series (UCS) | Cite as

Stability and Hopf Bifurcation for a First-Order Delay Differential Equation with Distributed Delay

Chapter

Abstract

This class of equations is widely used in many research fields—it can be obtained through the linearization of different nonlinear problems (see, for example, Sect. 8.5)—such as automatic, economic, and, for our purpose, in biological modeling because it can be associated with problems in which it is important to take into account some history of the state variable (e.g., gestation period, cell cycle durations, or incubation time [23, 35]).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Adimy, F. Crauste, and S. Ruan. A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM J. Appl. Math., 65(4): 1328–1352 2005.CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    M. Adimy, F. Crauste, and S. Ruan. Stability and hopf bifurcation in a mathematical model of pluripotent stem cell dynamics. Nonlinear Analysis: Real World Applications, 6: 651–670 2005.CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    M. Adimy, F. Crauste, and S. Ruan. Periodic oscillations in leukopoiesis models with two delays. J. Theor. Biol., 242: 288–299 2006.CrossRefMathSciNetGoogle Scholar
  4. 4.
    R. F. V. Anderson. Geometric and probabilistic stability criteria for delay systems. Math. Biosci., 105: 81–96 1991.CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    R. F. V. Anderson. Intrinsic parameters and stability of differential-delay equations. J. Math. Anal. Appl., 163: 184–199 1992.CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    F. M. Atay. Delayed feedback control near hopf bifurcation. Disc. Cont. Dyn. Syst. Ser. S 1 (2): 197–205 2008.CrossRefMathSciNetGoogle Scholar
  7. 7.
    E. Beretta, and Y. Kuang. Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal. 33(5): 1144–1165 2002.CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    S. Bernard, J. Bèlair, and M. C. Mackey. Sufficient conditions for stability of linear differential equations with distributed delay. Disc. Cont. Dyn. Syst. Ser., B 1: 233–256 2001.Google Scholar
  9. 9.
    S. Bernard, J. Bèlair, and M. C. Mackey. Oscillations in cyclical neutropenia: new evidence for origins based on mathematical modeling. J. Theor. Biol., 223: 283–298 2003.CrossRefGoogle Scholar
  10. 10.
    S. Bernard, J. Bèlair, and M. C. Mackey. Bifurcations in a white blood cell production model. Compt. R. Biol. 327: 201–210 2004.CrossRefGoogle Scholar
  11. 11.
    F. G. Boese. The stability chart for the linearized cushing equation with a discrete delay and gamma-distributed delays. J. Math. Anal. Appl., 140: 510–536 1989.CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    F. G. Boese. Stability criteria for second-order dynamical systems involving several time delays. SIAM J. Math. Anal. 26: 1306–1330 1995.CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    F. J. Burns and I. F. Tannock. On the existence of a G 0 phase in the cell cycle. Cell. Tissue Kinet, 19: 321–334 1970.Google Scholar
  14. 14.
    K. L. Cooke and Z. Grossman. Discrete delay, distributed delay and stability switches. J. Math. Anal. Appl. 86, 592–627 (1982)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    F. Crauste. Global asymptotic stability and hopf bifurcation for a blood cell production model. Math. Biosci. Eng., 3(2): 325–346 2006.MathSciNetMATHGoogle Scholar
  16. 16.
    J. Dieudonné. Foundations of Modern Analysis. Academic Press, New-York, 1960.MATHGoogle Scholar
  17. 17.
    P. Fortin and M. C. Mackey. Periodic chronic myelogenous leukemia: spectral analysis of blood cell counts and etiological implications. Brit. J. Haematol. 104: 336–345 1999.CrossRefGoogle Scholar
  18. 18.
    J. Hale. Theory of Functional Differential Equations. Springer, New York, 1977.MATHGoogle Scholar
  19. 19.
    J. K. Hale, and S. M. Verduyn Lunel. Introduction to Functional Differential Equations. Applied Mathematical Sciences 99, Springer-Verlag, New York, 1993.Google Scholar
  20. 20.
    N. D. Hayes. Roots of the transcendental equation associated with a certain differential difference equation. J. London Math. Society. 25: 226–232 1950.CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    C. Huang and S. Vandewalle. An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays. SIAM J. Sci. Comput., 25 (5): 1608–1632 2004.CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    C. Haurie, D. C. Dale, and M. C. Mackey. Cyclical neutropenia and other periodic hematological diseases: A review of mechanisms and mathematical models. Blood, 92: 2629–2640 1998.Google Scholar
  23. Y. Kuang. Delay Differential Equations with Applications in Population Dynamics. Mathematics in Science and Engineering 191, Academic Press, 1993.Google Scholar
  24. 24.
    Y. Kuang. Nonoccurrence of stability switching in systems of differential equations with distributed delays. Quart. Appl. Math., LII(3): 569–578 1994.MathSciNetGoogle Scholar
  25. 25.
    N. MacDonalds. Biological Delay Systems: Linear Stability Theory. Cambridge Studies Mathematical Biol. 8, Cambridge University Press, Cambridge, 1989.Google Scholar
  26. 26.
    M. C. Mackey. A unified hypothesis on the origin of aplastic anaemia and periodic hematopoiesis. Blood, 51: 946–956 1978.Google Scholar
  27. 27.
    M. C. Mackey. Dynamic hematological disorders of stem cell origin. In: J. G. Vassileva-Popova, and E. V. Jensen, (eds.) Biophysical and Biochemical Information Transfer in Recognition. Plenum Press, New York, 1979.Google Scholar
  28. 28.
    M. C. Mackey, C. Haurie, and J. Bèlair. Cell replication and control. In: A. Beuter, L. Glass, M. C. Mackey, and M. S. Titcombe (eds.) Nonlinear Dynamics in Physiology and Medicine. Springer, New York 2003.Google Scholar
  29. 29.
    M. C. Mackey and R. Rudnicki. Global stability in a delayed partial differential equation describing cellular replication. J. Math. Biol., 33: 89–109 1994.CrossRefMathSciNetMATHGoogle Scholar
  30. 30.
    M. C. Mackey and R. Rudnicki. A new criterion for the global stability of simultaneous cell replication and maturation processes. J. Math. Biol., 38: 195–219 1999.CrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    H. Ozbay, C. Bonnet, and J. Clairambault. Stability Analysis of Systems with Distributed Delays and Application to Hematopoietic Cell Maturation Dynamics. Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico, December 2008 (to appear).Google Scholar
  32. 32.
    L. Pujo-Menjouet, S. Bernard, and M. C. Mackey. Long period oscillations in a G 0 model of hematopoietic stem cells. SIAM J. Appl. Dynam. Sys., 4 (2): 312–332 2005.CrossRefMathSciNetMATHGoogle Scholar
  33. 33.
    L. Pujo-Menjouet, and M. C. Mackey. Contribution to the study of periodic chronic myelogenous leukemia. C. R. Biologies, 327: 235–244 2004.CrossRefGoogle Scholar
  34. 34.
    S. Ruan. Delay differential equations in single species dynamics. In: O. Arino, M. Hbid, and E. Aitdads (eds.) Delay Differential Equations with Applications. Springer, Berlin 2006.Google Scholar
  35. 35.
    S. Ruan and J. Wei. Periodic solutions of planar systems with two delays. Proc. Royal Soc. Edinburgh Ser. 129A: 1017–1032 1999.MathSciNetGoogle Scholar
  36. 36.
    Ruan S., Wei J. On the Zeros of Transcendental Functions with Applications to Stability of Delay Differential Equations with Two Delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10: 863–874 2003.MathSciNetMATHGoogle Scholar
  37. 37.
    L. F. Shampine and S. Thompson. Solving DDEs in Matlab. Appl. Numer. Math., 37: 441–458 2001. http://www.radford.edu/thompson/webddes/.CrossRefMathSciNetMATHGoogle Scholar
  38. 38.
    X. H. Tang. Asymptotic behavior of a differential equation with distributed delays. J. Math. Anal. Appl., 301: 313–335 2005.CrossRefMathSciNetMATHGoogle Scholar
  39. 39.
    J. Wei and S. Ruan. Stability and bifurcation in a neural network model with two delays. Physica D, 130: 255–272 1999.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Université de Lyon; Université Lyon 1, CNRS UMR5208 Institut Camille JordanVilleurbanne-CedexFrance

Personalised recommendations