Advertisement

Time-Delayed Feedback Control: From Simple Models to Lasers and Neural Systems

  • Eckehard SchöllEmail author
  • Philipp Hövel
  • Valentin Flunkert
  • Markus A. Dahlem
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

Over the past decade control of unstable states has evolved into a central issue in applied nonlinear science [1]. This field has various aspects comprising stabilization of unstable periodic orbits embedded in a deterministic chaotic attractor, which is generally referred to as chaos control, stabilization of unstable fixed points (steady states), or control of the coherence and timescales of stochastic motion.

Keywords

Periodic Orbit Hopf Bifurcation Feedback Gain Unstable Periodic Orbit Floquet Multiplier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Schöll and H. G. Schuster (Eds). Handbook of Chaos Control. Wiley-VCH, Weinheim, 2008, second completely revised and enlarged edition.Google Scholar
  2. 2.
    H. Nijmeijer and A. V. D. Schaft. Nonlinear Dynamical Control Systems. 3rd ed Springer, New York, 1996.Google Scholar
  3. 3.
    K. Ogata. Modern Control Engineering. Prentice-Hall, New York, 1997.Google Scholar
  4. 4.
    A. L. Fradkov, I. V. Miroshnik, and V. O. Nikiforov. Nonlinear and Adaptive Control of Complex Systems. Kluwer, Dordrecht, 1999.zbMATHGoogle Scholar
  5. 5.
    E. Ott, C. Grebogi, and J. A. Yorke. Controlling chaos. Phys. Rev. Lett., 64, 1196, 1990.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    K. Pyragas. Continuous control of chaos by self-controlling feedback. Phys. Lett. A, 170, 421, 1992.CrossRefGoogle Scholar
  7. 7.
    D. J. Gauthier. Resource letter: Controlling chaos. Am. J. Phys., 71, 750, 2003.CrossRefGoogle Scholar
  8. 8.
    K. Pyragas. Delayed feedback control of chaos. Phil. Trans. R. Soc. A, 364, 2309, 2006.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    G. Franceschini, S. Bose, and E. Schöll. Control of chaotic spatiotemporal spiking by time-delay autosynchronisation. Phys. Rev. E, 60, 5426, 1999.CrossRefGoogle Scholar
  10. 10.
    M. Kim, M. Bertram, M. Pollmann, A. von Oertzen, A. S. Mikhailov, H. H. Rotermund, and G. Ertl. Controlling chemical turbulence by global delayed feedback: Pattern formation in catalytic CO oxidation on Pt(110). Science, 292, 1357, 2001.CrossRefGoogle Scholar
  11. 11.
    O. Beck, A. Amann, E. Schöll, J. E. S. Socolar, and W. Just. Comparison of time-delayed feedback schemes for spatio-temporal control of chaos in a reaction-diffusion system with global coupling. Phys. Rev. E, 66, 016213, 2002.CrossRefGoogle Scholar
  12. 12.
    N. Baba, A. Amann, E. Schöll, and W. Just. Giant improvement of time-delayed feedback control by spatio-temporal filtering. Phys. Rev. Lett., 89, 074101, 2002.CrossRefGoogle Scholar
  13. 13.
    J. Unkelbach, A. Amann, W. Just, and E. Schöll. Time–delay autosynchronization of the spatiotemporal dynamics in resonant tunneling diodes. Phys. Rev. E, 68, 026204, 2003.CrossRefGoogle Scholar
  14. 14.
    J. Schlesner, A. Amann, N. B. Janson, W. Just, and E. Schöll. Self-stabilization of high frequency oscillations in semiconductor superlattices by time–delay autosynchronization. Phys. Rev. E, 68, 066208, 2003.CrossRefGoogle Scholar
  15. 15.
    C. Beta, M. Bertram, A. S. Mikhailov, H. H. Rotermund, and G. Ertl. Controlling turbulence in a surface chemical reaction by time-delay autosynchronization. Phys. Rev. E, 67, 046224, 2003.CrossRefGoogle Scholar
  16. 16.
    C. Beta and A. S. Mikhailov. Controlling spatiotemporal chaos in oscillatory reaction-diffusion systems by time-delay autosynchronization. Physica D, 199, 173, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    K. A. Montgomery and M. Silber. Feedback control of travelling wave solutions of the complex Ginzburg-Landau equation. Nonlinearity, 17, 2225, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    E. Schöll, J. Hizanidis, P. Hövel, and G. Stegemann. Pattern formation in semiconductors under the influence of time-delayed feedback control and noise. In: L. Schimansky-Geier, B. Fiedler, J. Kurths, and E. Schöll (eds.), Analysis and control of complex nonlinear processes in physics, chemistry and biology. World Scientific, Singapore, 2007, pp. 135–183.Google Scholar
  19. 19.
    C. M. Postlethwaite and M. Silber. Stabilizing unstable periodic orbits in the lorenz equations using time-delayed feedback control. Phys. Rev. E, 76, 056214, 2007.MathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Ahlborn and U. Parlitz. Controlling spatiotemporal chaos using multiple delays. Phys. Rev. E, 75, 65202, 2007.CrossRefGoogle Scholar
  21. 21.
    A. Ahlborn and U. Parlitz. Control and synchronization of spatiotemporal chaos. Phys. Rev. E, 77, 016201, 2008.CrossRefGoogle Scholar
  22. 22.
    M. A. Dahlem, F. M. Schneider, and E. Schöll. Failure of feedback as a putative common mechanism of spreading depolarizations in migraine and stroke. Chaos, 18, 026110, 2008.MathSciNetCrossRefGoogle Scholar
  23. 23.
    F. M. Schneider, E. Schöll, and M. A. Dahlem. Controlling the onset of traveling pulses in excitable media by nonlocal spatial coupling and time delayed feedback. Chaos, 19, 015110, 2009.MathSciNetCrossRefGoogle Scholar
  24. 24.
    M. Kehrt, P. Hövel, V. Flunkert, M. A. Dahlem, P. Rodin, and E. Schöll. Stabilization of complex spatio-temporal dynamics near a subcritical Hopf bifurcation by time-delayed feedback. Eur. Phys. J. B, 68, 557, 2009.CrossRefGoogle Scholar
  25. 25.
    Y. N. Kyrychko, K. B. Blyuss, S. J. Hogan, and E. Schöll. Control of spatio-temporal patterns in the Gray-Scott model. Chaos 19, 043126, 2009.Google Scholar
  26. 26.
    N. B. Janson, A. G. Balanov, and E. Schöll. Delayed feedback as a means of control of noise-induced motion. Phys. Rev. Lett. 93, 010601, 2004.CrossRefGoogle Scholar
  27. 27.
    A. G. Balanov, N. B. Janson, and E. Schöll. Control of noise-induced oscillations by delayed feedback. Physica D, 199, 1, 2004.CrossRefzbMATHGoogle Scholar
  28. 28.
    J. Pomplun, A. Amann, and E. Schöll. Mean field approximation of time-delayed feedback control of noise-induced oscillations in the Van der Pol system. Europhys. Lett., 71, 366, 2005.MathSciNetCrossRefGoogle Scholar
  29. 29.
    N. B. Janson, A. G. Balanov, and E. Schöll. Control of noise-induced dynamics. In: E. Schöll and H. G. Schuster (eds.), Handbook of Chaos Control. Wiley-VCH, Weinheim, 2008, chap. 11, pp. 223–274, second completely revised and enlarged edition.Google Scholar
  30. 30.
    G. Hu, T. Ditzinger, C. Z. Ning, and H. Haken. Stochastic resonance without external periodic force. Phys. Rev. Lett., 71, 807, 1993.CrossRefGoogle Scholar
  31. 31.
    A. Pikovsky and J. Kurths. Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett., 78, 775, 1997.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    J. García-Ojalvo and J. M. Sancho. Noise in Spatially Extended Systems. Springer, New York, 1999.Google Scholar
  33. 33.
    C. Masoller. Noise-induced resonance in delayed feedback systems. Phys. Rev. Lett., 88, 034102, 2002.CrossRefGoogle Scholar
  34. 34.
    B. Lindner, J. García-Ojalvo, A. Neiman, and L. Schimansky-Geier. Effects of noise in excitable systems. Phys. Rep., 392, 321, 2004.CrossRefGoogle Scholar
  35. 35.
    F. Sagués, J. M. Sancho, and J. García-Ojalvo. Spatiotemporal order out of noise. Rev. Mod. Phys., 79, 829, 2007.CrossRefGoogle Scholar
  36. 36.
    D. J. Gauthier, D. K. Sukow, H. M. Concannon, and J. E. S. Socolar. Stabilizing unstable periodic orbits in a fast diode resonator using continuous time-delay autosynchronization. Phys. Rev. E, 50, 2343, 1994.CrossRefGoogle Scholar
  37. 37.
    J. N. Blakely, L. Illing, and D. J. Gauthier. Controlling fast chaos in delay dynamical systems. Phys. Rev. Lett., 92, 193901, 2004.CrossRefGoogle Scholar
  38. 38.
    S. Schikora, P. Hövel, H. J. Wünsche, E. Schöll, and F. Henneberger. All-optical noninvasive control of unstable steady states in a semiconductor laser. Phys. Rev. Lett., 97, 213902, 2006.CrossRefGoogle Scholar
  39. 39.
    J. E. S. Socolar, D. W. Sukow, and D. J. Gauthier. Stabilizing unstable periodic orbits in fast dynamical systems. Phys. Rev. E, 50, 3245, 1994.CrossRefGoogle Scholar
  40. 40.
    J. E. S. Socolar and D. J. Gauthier. Analysis and comparison of multiple-delay schemes for controlling unstable fixed points of discrete maps. Phys. Rev. E, 57, 6589, 1998.CrossRefGoogle Scholar
  41. 41.
    I. Harrington and J. E. S. Socolar. Design and robustness of delayed feedback controllers for discrete systems. Phys. Rev. E, 69, 056207, 2004.MathSciNetCrossRefGoogle Scholar
  42. 42.
    M. E. Bleich and J. E. S. Socolar. Stability of periodic orbits controlled by time-delay feedback. Phys. Lett. A, 210, 87, 1996.CrossRefGoogle Scholar
  43. 43.
    W. Just, T. Bernard, M. Ostheimer, E. Reibold, and H. Benner. Mechanism of time-delayed feedback control. Phys. Rev. Lett., 78, 203, 1997.CrossRefGoogle Scholar
  44. 44.
    H. Nakajima. On analytical properties of delayed feedback control of chaos. Phys. Lett. A, 232, 207, 1997.MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    K. Pyragas. Analytical properties and optimization of time-delayed feedback control. Phys. Rev. E, 66, 26207, 2002.CrossRefGoogle Scholar
  46. 46.
    W. Just, H. Benner, and E. Schöll. Control of chaos by time–delayed feedback: a survey of theoretical and experimental aspects. In: B. Kramer (ed.), Advances in Solid State Physics. Springer, Berlin, 2003, vol. 43, pp. 589–603.Google Scholar
  47. 47.
    P. Hövel and J. E. S. Socolar. Stability domains for time-delay feedback control with latency. Phys. Rev. E, 68, 036206, 2003.CrossRefGoogle Scholar
  48. 48.
    P. Hövel and E. Schöll. Control of unstable steady states by time-delayed feedback methods. Phys. Rev. E, 72, 046203, 2005.Google Scholar
  49. 49.
    S. Yanchuk, M. Wolfrum, P. Hövel, and E. Schöll. Control of unstable steady states by long delay feedback. Phys. Rev. E, 74, 026201, 2006.MathSciNetCrossRefGoogle Scholar
  50. 50.
    T. Dahms, P. Hövel, and E. Schöll. Control of unstable steady states by extended time-delayed feedback. Phys. Rev. E, 76, 056201, 2007.MathSciNetCrossRefGoogle Scholar
  51. 51.
    A. Amann, E. Schöll, and W. Just. Some basic remarks on eigenmode expansions of time-delay dynamics. Physica A, 373, 191, 2007.CrossRefGoogle Scholar
  52. 52.
    B. Fiedler, V. Flunkert, M. Georgi, P. Hövel, and E. Schöll. Refuting the odd number limitation of time-delayed feedback control. Phys. Rev. Lett., 98, 114101, 2007.CrossRefGoogle Scholar
  53. 53.
    W. Just, B. Fiedler, V. Flunkert, M. Georgi, P. Hövel, and E. Schöll. Beyond odd number limitation: a bifurcation analysis of time-delayed feedback control. Phys. Rev. E, 76, 026210, 2007.MathSciNetCrossRefGoogle Scholar
  54. 54.
    B. Fiedler, S. Yanchuk, V. Flunkert, P. Hövel, H. J. Wünsche, and E. Schöll. Delay stabilization of rotating waves near fold bifurcation and application to all-optical control of a semiconductor laser. Phys. Rev. E, 77, 066207, 2008.MathSciNetCrossRefGoogle Scholar
  55. 55.
    A. G. Balanov, N. B. Janson, and E. Schöll. Delayed feedback control of chaos: Bifurcation analysis. Phys. Rev. E, 71, 016222, 2005.CrossRefGoogle Scholar
  56. 56.
    J. Hizanidis, R. Aust, and E. Schöll. Delay-induced multistability near a global bifurcation. Int. J. Bifur. Chaos, 18, 1759, 2008.CrossRefzbMATHGoogle Scholar
  57. 57.
    K. Pyragas. Control of chaos via extended delay feedback. Phys. Lett. A, 206, 323, 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    A. Ahlborn and U. Parlitz. Stabilizing unstable steady states using multiple delay feedback control. Phys. Rev. Lett., 93, 264101, 2004.CrossRefGoogle Scholar
  59. 59.
    A. Ahlborn and U. Parlitz. Controlling dynamical systems using multiple delay feedback control. Phys. Rev. E, 72, 016206, 2005.MathSciNetCrossRefGoogle Scholar
  60. 60.
    A. Gjurchinovski and V. Urumov. Stabilization of unstable steady states by variable delay feedback control. Europhys. Lett., 84, 40013, 2008.CrossRefGoogle Scholar
  61. 61.
    E. Schöll. Delayed feedback control of chaotic spatio-temporal patterns in semiconductor nanostructures. In: E. Schöll and H. G. Schuster (eds), [1], chap. 24, pp. 533–558, second completely revised and enlarged edition.Google Scholar
  62. 62.
    E. Schöll. Pattern formation and time-delayed feedback control at the nano-scale. In: G. Radons, B. Rumpf, and H. G. Schuster (eds.), Nonlinear Dynamics of Nanosystems. Wiley-VCH, Weinheim, 2009, pp. 325–367.Google Scholar
  63. 63.
    A. S. Mikhailov and K. Showalter. Control of waves, patterns and turbulence in chemical systems. Phys. Rep., 425, 79, 2006.MathSciNetCrossRefGoogle Scholar
  64. 64.
    P. Parmananda, R. Madrigal, M. Rivera, L. Nyikos, I. Z. Kiss, and V. Gáspár. Stabilization of unstable steady states and periodic orbits in an electrochemical system using delayed-feedback control. Phys. Rev. E, 59, 5266, 1999.CrossRefGoogle Scholar
  65. 65.
    P. Parmananda. Tracking fixed-point dynamics in an electrochemical system using delayed-feedback control. Phys. Rev. E, 67, 045202R, 2003.CrossRefGoogle Scholar
  66. 66.
    D. Battogtokh and A. S. Mikhailov. Controlling turbulence in the complex Ginzburg-Landau equation. Physica D, 90, 84, 1996.MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    J. Schlesner, V. Zykov, H. Engel, and E. Schöll. Stabilization of unstable rigid rotation of spiral waves in excitable media. Phys. Rev. E, 74, 046215, 2006.CrossRefGoogle Scholar
  68. 68.
    G. J. E. Santos, J. Escalona, and P. Parmananda. Regulating noise-induced spiking using feedback. Phys. Rev. E, 73, 042102, 2006.CrossRefGoogle Scholar
  69. 69.
    I. Z. Kiss, C. G. Rusin, H. Kori, and J. L. Hudson. Engineering Complex Dynamical Structures: Sequential Patterns and Desynchronization. Science, 316, 1886, 2007.MathSciNetCrossRefGoogle Scholar
  70. 70.
    Y. Zhai, I. Z. Kiss, and J. L. Hudson. Control of complex dynamics with time-delayed feedback in populations of chemical oscillators: Desynchronization and clustering. Ind. Eng. Chem. Res., 47, 3502, 2008.CrossRefGoogle Scholar
  71. 71.
    M. G. Rosenblum and A. Pikovsky. Controlling synchronization in an ensemble of globally coupled oscillators. Phys. Rev. Lett., 92, 114102, 2004.CrossRefGoogle Scholar
  72. 72.
    O. V. Popovych, C. Hauptmann, and P. A. Tass. Effective desynchronization by nonlinear delayed feedback. Phys. Rev. Lett., 94, 164102, 2005.CrossRefGoogle Scholar
  73. 73.
    K. Hall, D. J. Christini, M. Tremblay, J. J. Collins, L. Glass, and J. Billette. Dynamic control of cardiac alterans. Phys. Rev. Lett., 78, 4518, 1997.CrossRefGoogle Scholar
  74. 74.
    F. M. Atay. Distributed delays facilitate amplitude death of coupled oscillators. Phys. Rev. Lett., 91, 094101, 2003.CrossRefGoogle Scholar
  75. 75.
    H. Haken. Brain Dynamics: Synchronization and Activity Patterns in Pulse-Coupled Neural Nets with Delays and Noise. Springer Verlag GmbH, Berlin, 2006.Google Scholar
  76. 76.
    K. Pyragas, O. V. Popovych, and P. A. Tass. Controlling synchrony in oscillatory networks with a separate stimulation-registration setup. Europhys. Lett., 80, 40002, 2007.CrossRefGoogle Scholar
  77. 77.
    M. Gassel, E. Glatt, and F. Kaiser. Time-delayed feedback in a net of neural elements: Transitions from oscillatory to excitable dynamics. Fluct. Noise Lett., 7, L225, 2007.CrossRefGoogle Scholar
  78. 78.
    M. Gassel, E. Glatt, and F. Kaiser. Delay-sustained pattern formation in subexcitable media. Phys. Rev. E, 77, 066220, 2008.MathSciNetCrossRefGoogle Scholar
  79. 79.
    O. D’Huys, R. Vicente, T. Erneux, J. Danckaert, and I. Fischer. Synchronization properties of network motifs: Influence of coupling delay and symmetry. Chaos, 18, 037116, 2008.MathSciNetCrossRefGoogle Scholar
  80. 80.
    G. C. Sethia, A. Sen, and F. M. Atay. Clustered chimera states in delay-coupled oscillator systems. Phys. Rev. Lett., 100, 144102, 2008.CrossRefGoogle Scholar
  81. 81.
    W. Kinzel, J. Kestler, and I. Kanter. Chaos pass filter: Linear response of synchronized chaotic systems. 2008, http://arxiv.org/abs/0806.4291.Google Scholar
  82. 82.
    M. Zigzag, M. Butkovski, A. Englert, W. Kinzel, and I. Kanter. Zero-lag synchronization of chaotic units with time-delayed couplings. Europhys. Lett., 85, 60005, 2009.CrossRefGoogle Scholar
  83. 83.
    E. Schöll and K. Pyragas. Tunable semiconductor oscillator based on self-control of chaos in the dynamic Hall effect. Europhys. Lett., 24, 159, 1993.CrossRefGoogle Scholar
  84. 84.
    D. Reznik and E. Schöll. Oscillation modes, transient chaos and its control in a modulation-doped semiconductor double-heterostructure. Z. Phys. B, 91, 309, 1993.CrossRefGoogle Scholar
  85. 85.
    D. P. Cooper and E. Schöll. Tunable real space transfer oscillator by delayed feedback control of chaos. Z. f. Naturforsch., 50a, 117, 1995.Google Scholar
  86. 86.
    W. Just, S. Popovich, A. Amann, N. Baba, and E. Schöll. Improvement of time–delayed feedback control by periodic modulation: Analytical theory of Floquet mode control scheme. Phys. Rev. E, 67, 026222, 2003.CrossRefGoogle Scholar
  87. 87.
    E. Schöll, A. G. Balanov, N. B. Janson, and A. Neiman. Controlling stochastic oscillations close to a Hopf bifurcation by time-delayed feedback. Stoch. Dyn., 5, 281, 2005.MathSciNetCrossRefzbMATHGoogle Scholar
  88. 88.
    J. Pomplun, A. G. Balanov, and E. Schöll. Long-term correlations in stochastic systems with extended time-delayed feedback. Phys. Rev. E, 75, 040101(R), 2007.CrossRefGoogle Scholar
  89. 89.
    T. Prager, H. P. Lerch, L. Schimansky-Geier, and E. Schöll. Increase of coherence in excitable systems by delayed feedback. J. Phys. A, 40, 11045, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  90. 90.
    A. Pototsky and N. B. Janson. Correlation theory of delayed feedback in stochastic systems below Andronov-Hopf bifurcation. Phys. Rev. E, 76, 056208, 2007.MathSciNetCrossRefGoogle Scholar
  91. 91.
    A. Pototsky and N. B. Janson. Excitable systems with noise and delay, with applications to control: Renewal theory approach. Phys. Rev. E, 77, 031113, 2008.MathSciNetCrossRefGoogle Scholar
  92. 92.
    A. G. Balanov, V. Beato, N. B. Janson, H. Engel, and E. Schöll. Delayed feedback control of noise-induced patterns in excitable media. Phys. Rev. E, 74, 016214, 2006.CrossRefGoogle Scholar
  93. 93.
    B. Hauschildt, N. B. Janson, A. G. Balanov, and E. Schöll. Noise-induced cooperative dynamics and its control in coupled neuron models. Phys. Rev. E, 74, 051906, 2006.MathSciNetCrossRefGoogle Scholar
  94. 94.
    E. Schöll, G. Hiller, P. Hövel, and M. A. Dahlem. Time-delayed feedback in neurosystems. Phil. Trans. R. Soc. A, 367, 1079, 2009.CrossRefGoogle Scholar
  95. 95.
    V. Flunkert and E. Schöll. Suppressing noise-induced intensity pulsations in semiconductor lasers by means of time-delayed feedback. Phys. Rev. E, 76, 066202, 2007.CrossRefGoogle Scholar
  96. 96.
    J. Hizanidis, A. G. Balanov, A. Amann, and E. Schöll. Noise-induced oscillations and their control in semiconductor superlattices. Int. J. Bifur. Chaos, 16, 1701, 2006.CrossRefzbMATHGoogle Scholar
  97. 97.
    J. Hizanidis, A. G. Balanov, A. Amann, and E. Schöll. Noise-induced front motion: signature of a global bifurcation. Phys. Rev. Lett., 96, 244104, 2006.CrossRefGoogle Scholar
  98. 98.
    J. Hizanidis and E. Schöll. Control of noise-induced spatiotemporal patterns in superlattices. phys. stat. sol. (c), 5, 207, 2008.CrossRefGoogle Scholar
  99. 99.
    J. Hizanidis and E. Schöll. Control of coherence resonance in semiconductor superlattices. Phys. Rev. E, 78, 066205, 2008.CrossRefGoogle Scholar
  100. 100.
    G. Stegemann, A. G. Balanov, and E. Schöll. Delayed feedback control of stochastic spatiotemporal dynamics in a resonant tunneling diode. Phys. Rev. E, 73, 016203, 2006.CrossRefGoogle Scholar
  101. 101.
    E. Schöll, N. Majer, and G. Stegemann. Extended time delayed feedback control of stochastic dynamics in a resonant tunneling diode. phys. stat. sol. (c), 5, 194, 2008.CrossRefGoogle Scholar
  102. 102.
    N. Majer and E. Schöll. Resonant control of stochastic spatio-temporal dynamics in a tunnel diode by multiple time delayed feedback. Phys. Rev. E, 79, 011109, 2009.CrossRefGoogle Scholar
  103. 103.
    K. Pyragas, V. Pyragas, I. Z. Kiss, and J. L. Hudson. Stabilizing and tracking unknown steady states of dynamical systems. Phys. Rev. Lett., 89, 244103, 2002.CrossRefGoogle Scholar
  104. 104.
    S. Bielawski, M. Bouazaoui, D. Derozier, and P. Glorieux. Stabilization and characterization of unstable steady states in a laser. Phys. Rev. A, 47, 3276, 1993.CrossRefGoogle Scholar
  105. 105.
    A. Chang, J. C. Bienfang, G. M. Hall, J. R. Gardner, and D. J. Gauthier. Stabilizing unstable steady states using extended time-delay autosynchronisation. Chaos, 8, 782, 1998.CrossRefzbMATHGoogle Scholar
  106. 106.
    K. Pyragas, V. Pyragas, I. Z. Kiss, and J. L. Hudson. Adaptive control of unknown unstable steady states of dynamical systems. Phys. Rev. E, 70, 026215, 2004.CrossRefGoogle Scholar
  107. 107.
    E. M. Wright. The linear difference-differential equation with constant coefficients. Proc. R. Soc. Edinburgh, Sect. A: Math. Phys. Sci., 62, 387, 1949.Google Scholar
  108. 108.
    E. M. Wright. A non-linear difference-differential equation. J. Reine Angew. Math., 194, 66, 1955.MathSciNetzbMATHGoogle Scholar
  109. 109.
    R. Bellmann and K. L. Cooke. Differential-Difference Equations. Academic Press, New York, 1963.Google Scholar
  110. 110.
    J. K. Hale. Functional Differential Equations. Applied Mathematical Sciences Vol. 3, Springer, New York, 1971.zbMATHGoogle Scholar
  111. 111.
    F. M. Asl and A. G. Ulsoy. Analysis of a system of linear delay differential equations. ASME J. Dyn. Syst., Meas., Control, 125, 215, 2003.CrossRefGoogle Scholar
  112. 112.
    W. Just, E. Reibold, H. Benner, K. Kacperski, P. Fronczak, and J. Holyst. Limits of time-delayed feedback control. Phys. Lett. A, 254, 158, 1999.CrossRefGoogle Scholar
  113. 113.
    S. Yanchuk and M. Wolfrum. Instabilities of equilibria of delay-differential equations with large delay. In: Proc. 5th EUROMECH Nonlinear Dynamics Conference ENOC-2005, Eindhoven, edited by D. H. van Campen, M. D. Lazurko, and W. P. J. M. van den Oever (Eindhoven University of Technology, Eindhoven, Netherlands, 2005), pp. 08–010, eNOC Eindhoven (CD ROM), ISBN 90 386 2667 3.Google Scholar
  114. 114.
    S. Lepri, G. Giacomelli, A. Politi, and F. T. Arecchi. High-dimensional chaos in delayed dynamical-systems. Physica D, 70, 235, 1994.MathSciNetCrossRefzbMATHGoogle Scholar
  115. 115.
    K. Pyragas and A. Tamaševičius. Experimental control of chaos by delayed self-controlling feedback. Phys. Lett. A, 180, 99, 1993.CrossRefGoogle Scholar
  116. 116.
    S. Bielawski, D. Derozier, and P. Glorieux. Controlling unstable periodic orbits by a delayed continuous feedback. Phys. Rev. E, 49, R971, 1994.CrossRefGoogle Scholar
  117. 117.
    T. Pierre, G. Bonhomme, and A. Atipo. Controlling the chaotic regime of nonlinear ionization waves using time-delay autosynchronisation method. Phys. Rev. Lett., 76, 2290, 1996.CrossRefGoogle Scholar
  118. 118.
    D. W. Sukow, M. E. Bleich, D. J. Gauthier, and J. E. S. Socolar. Controlling chaos in a fast diode resonator using time-delay autosynchronisation: Experimental observations and theoretical analysis. Chaos, 7, 560, 1997.CrossRefGoogle Scholar
  119. 119.
    O. Lüthje, S. Wolff, and G. Pfister. Control of chaotic taylor-couette flow with time-delayed feedback. Phys. Rev. Lett., 86, 1745, 2001.CrossRefGoogle Scholar
  120. 120.
    J. M. Krodkiewski and J. S. Faragher. Stabilization of motion of helicopter rotor blades using delayed feedback - modelling, computer simulation and experimental verification. J. Sound Vib., 234, 591, 2000.CrossRefGoogle Scholar
  121. 121.
    T. Fukuyama, H. Shirahama, and Y. Kawai. Dynamical control of the chaotic state of the current-driven ion acoustic instability in a laboratory plasma using delayed feedback. Phys. Plasmas, 9, 4525, 2002.CrossRefGoogle Scholar
  122. 122.
    C. von Loewenich, H. Benner, and W. Just. Experimental relevance of global properties of time-delayed feedback control. Phys. Rev. Lett., 93, 174101, 2004.CrossRefGoogle Scholar
  123. 123.
    H. Nakajima and Y. Ueda. Limitation of generalized delayed feedback control. Physica D, 111, 143, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  124. 124.
    I. Harrington and J. E. S. Socolar. Limitation on stabilizing plane waves via time-delay feedback. Phys. Rev. E, 64, 056206, 2001.CrossRefGoogle Scholar
  125. 125.
    K. Pyragas, V. Pyragas, and H. Benner. Delayed feedback control of dynamical systems at subcritical Hopf bifurcation. Phys. Rev. E, 70, 056222, 2004.CrossRefGoogle Scholar
  126. 126.
    V. Pyragas and K. Pyragas. Delayed feedback control of the Lorenz system: An analytical treatment at a subcritical Hopf bifurcation. Phys. Rev. E, 73, 036215, 2006.MathSciNetCrossRefGoogle Scholar
  127. 127.
    H. G. Schuster and M. B. Stemmler. Control of chaos by oscillating feedback. Phys. Rev. E, 56, 6410, 1997.CrossRefGoogle Scholar
  128. 128.
    H. Nakajima and Y. Ueda. Half-period delayed feedback control for dynamical systems with symmetries. Phys. Rev. E, 58, 1757, 1998.CrossRefGoogle Scholar
  129. 129.
    K. Pyragas. Control of chaos via an unstable delayed feedback controller. Phys. Rev. Lett., 86, 2265, 2001.CrossRefGoogle Scholar
  130. 130.
    B. Fiedler, V. Flunkert, M. Georgi, P. Hövel, and E. Schöll. Beyond the odd number limitation of time-delayed feedback control. In: E. Schöll and H. G. Schuster (eds.), Handbook of Chaos Control. Wiley-VCH, Weinheim, 2008, pp. 73–84, second completely revised and enlarged edition.Google Scholar
  131. 131.
    O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel, and H. O. Walther. Delay Equations. Springer-Verlag, New York, 1995.Google Scholar
  132. 132.
    Y. A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, New York, 1995.zbMATHGoogle Scholar
  133. 133.
    Z. Gills, C. Iwata, R. Roy, I. B. Schwartz, and I. Triandaf. Tracking unstable steady states: Extending the stability regime of a multimode laser system. Phys. Rev. Lett., 69, 3169, 1992.CrossRefGoogle Scholar
  134. 134.
    A. Ahlborn and U. Parlitz. Chaos control using notch feedback. Phys. Rev. Lett., 96, 034102, 2006.CrossRefGoogle Scholar
  135. 135.
    S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger. Nonlinear dynamics of semiconductor lasers with active optical feedback. Phys. Rev. E, 69, 016206, 2004.CrossRefGoogle Scholar
  136. 136.
    H. J. Wünsche, S. Bauer, J. Kreissl, O. Ushakov, N. Korneyev, F. Henneberger, E. Wille, H. Erzgräber, M. Peil, W. Elsäßer, and I. Fischer. Synchronization of delay-coupled oscillators: A study of semiconductor lasers. Phys. Rev. Lett., 94, 163901, 2005.CrossRefGoogle Scholar
  137. 137.
    W. Lu and R. G. Harrison. Controlling chaos using continuous interference feedback: proposal for all optical devices. Opti. Commu., 109, 457, 1994.Google Scholar
  138. 138.
    C. Simmendinger and O. Hess. Controlling delay-induced chaotic behavior of a semiconductor laser with optical feedback. Phys. Lett. A, 216, 97, 1996.CrossRefGoogle Scholar
  139. 139.
    V. Z. Tronciu, H. J. Wünsche, M. Wolfrum, and M. Radziunas. Semiconductor laser under resonant feedback from a Fabry-Perot: Stability of continuous-wave operation. Phys. Rev. E, 73, 046205, 2006.CrossRefGoogle Scholar
  140. 140.
    B. Dahmani, L. Hollberg, and R. Drullinger. Frequency stabilization of semiconductor lasers by resonant optical feedback. Opt. Lett., 12, 876, 1987.CrossRefGoogle Scholar
  141. 141.
    P. Laurent, A. Clairon, and C. Breant. Frequency noise analysis of optically self-locked diode lasers. IEEE J. Quantum Electron., 25, 1131, 1989.CrossRefGoogle Scholar
  142. 142.
    M. Peil, I. Fischer, and W. Elsäßer. Spectral braodband dynamics of seminconductor lasers with resonant short cavities. Phys. Rev. A, 73, 23805, 2006.CrossRefGoogle Scholar
  143. 143.
    H. Erzgräber, B. Krauskopf, D. Lenstra, A. P. A. Fischer, and G. Vemuri. Frequency versus relaxation oscillations in a semiconductor laser with coherent filtered optical feedback. Phys. Rev. E, 73, 055201(R), 2006.Google Scholar
  144. 144.
    T. Dahms, P. Hövel, and E. Schöll. Stabilizing continuous-wave output in semiconductor lasers by time-delayed feedback. Phys. Rev. E, 78, 056213, 2008.CrossRefGoogle Scholar
  145. 145.
    M. G. Rosenblum and A. Pikovsky. Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms. Phys. Rev. E, 70, 041904, 2004.MathSciNetCrossRefGoogle Scholar
  146. 146.
    H. J. Wünsche, S. Schikora, and F. Henneberger. Noninvasive control of semiconductor lasers by delayed optical feedback. In: E. Schöll and H. G. Schuster (eds.), Handbook of Chaos Control. Wiley-VCH, Weinheim, 2008, second completely revised and enlarged edition.Google Scholar
  147. 147.
    R. Lang and K. Kobayashi. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron, 16, 347, 1980.CrossRefGoogle Scholar
  148. 148.
    G. P. Agrawal and G. R. Gray. Effect of phase-conjugate feedback on the noise characteristics of semiconductor-lasers. Phys. Rev. A, 46, 5890, 1992.CrossRefGoogle Scholar
  149. 149.
    P. M. Alsing, V. Kovanis, A. Gavrielides, and T. Erneux. Lang and Kobayashi phase equation. Phys. Rev. A, 53, 4429, 1996.CrossRefGoogle Scholar
  150. 150.
    G. P. Agrawal and N. K. Dutta. Semiconductor Lasers. Van Nostrand Reinhold, New York, 1993.Google Scholar
  151. 151.
    R. FitzHugh. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J., 1, 445, 1961.CrossRefGoogle Scholar
  152. 152.
    J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line simulating nerve axon. Proc. IRE, 50, 2061, 1962.CrossRefGoogle Scholar
  153. 153.
    P. Hövel, M. A. Dahlem, and E. Schöll. Control of synchronization in coupled neural systems by time-delayed feedback. Int. J. Bifur. Chaos, 2010, in print (arxiv:0809.0819v1).Google Scholar
  154. 154.
    M. A. Dahlem, G. Hiller, A. Panchuk, and E. Schöll. Dynamics of delay-coupled excitable neural systems. Int. J. Bifur. Chaos, 19, 745, 2009.CrossRefzbMATHGoogle Scholar
  155. 155.
    D. Schmitz, S. Schuchmann, A. Fisahn, A. Draguhn, E. H. Buhl, E. Petrasch-Parwez, R. Dermietzel, U. Heinemann, and R. D. Traub. Axo-axonal coupling. a novel mechanism for ultrafast neuronal communication. Neuron, 31, 831, 2001.CrossRefGoogle Scholar
  156. 156.
    D. T. J. Liley and J. J. Wright. Intracortical connectivity of pyramidal and stellate cells: estimates of synaptic densities and coupling symmetry. Network: Comput. Neural Syst., V5, 175, 1994.Google Scholar
  157. 157.
    R. D. Pinto, P. Varona, A. R. Volkovskii, A. Szücs, H. D. I. Abarbanel, and M. I. Rabinovich. Synchronous behavior of two coupled electronic neurons. Phys. Rev. E, 62, 2644, 2000.CrossRefGoogle Scholar
  158. 158.
    F. F. De-Miguel, M. Vargas-Caballero, and E. García-Pérez. Spread of synaptic potentials through electrical synapses in Retzius neurones of the leech. J. Exp. Biol., 204, 3241, 2001.Google Scholar
  159. 159.
    N. Buric and D. Todorovic. Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling. Phys. Rev. E, 67, 066222, 2003.MathSciNetCrossRefGoogle Scholar
  160. 160.
    V. Hadamschek. Brain stimulation techniques via nonlinear delayed neurofeedback based on MEG inverse methods. PhD Thesis, TU Berlin, 2006.Google Scholar
  161. 161.
    P. Tass. Effective desynchronization with bipolar double-pulse stimulation. Phys. Rev. E, 66, 036226, 2002.CrossRefGoogle Scholar
  162. 162.
    M. G. Rosenblum, A. Pikovsky, and J. Kurths. Synchronization – A universal concept in nonlinear sciences. Cambridge University Press, Cambridge, 2001.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Eckehard Schöll
    • 1
    Email author
  • Philipp Hövel
    • 1
  • Valentin Flunkert
    • 1
  • Markus A. Dahlem
    • 1
  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations