Complex Time-Delay Systems pp 1-43

Part of the Understanding Complex Systems book series (UCS) | Cite as

Amplitude Death, Synchrony, and Chimera States in Delay Coupled Limit Cycle Oscillators

  • Abhijit Sen
  • Ramana Dodla
  • George L. Johnston
  • Gautam C. Sethia


In this chapter we will discuss the effects of time delay on the collective states of a model mathematical system composed of a collection of coupled limit cycle oscillators. Such an assembly of coupled nonlinear oscillators serves as a useful paradigm for the study of collective phenomena in many physical, chemical, and biological systems and has therefore led to a great deal of theoretical and experimental work in the past [1–6]. Examples of practical applications of such models include simulating the interactions of arrays of Josephson junctions [7, 8], semiconductor lasers [9, 10], charge density waves [11], phase-locking of relativistic magnetrons [12], Belousov–Zhabotinskii reactions in coupled Brusselator models [2, 13–15], and neural oscillator networks for circadian pacemakers [16].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. T. Winfree. The Geometry of Biological Time. Springer-Verlag, New York, 1980.MATHGoogle Scholar
  2. 2.
    Y. Kuramoto. Chemical Oscillations, Waves and Turbulence. Springer, Berlin, 1984.MATHGoogle Scholar
  3. 3.
    S. H. Strogatz. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D, 143:1–20, 2000. and references therein.CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    K. Satoh. Computer experiment on the cooperative behavior of network of interacting nonlinear oscillators. J. Phys. Soc. Japan, 58:2010–2021, 1989.Google Scholar
  5. 5.
    G. B. Ermentrout. Oscillator death in populations of “all to all” coupled nonlinear oscillators. Physica D, 41:219–231, 1990.CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    A. A. Brailove and P. S. Linsay. An experimental study of a population of relaxation oscillators with a phase-repelling mean-field coupling. Int. J. Bifurcation Chaos, 6:1211–1253, 1996.CrossRefGoogle Scholar
  7. 7.
    P. Hadley, M. R. Beasley, and K. Wiesenfeld. Phase locking of Josephson-junction series arrays. Phys. Rev. B, 38:8712–8719, 1988.CrossRefGoogle Scholar
  8. 8.
    K. Wiesenfeld, P. Colet, and S. H. Strogatz. Synchronization transitions in a disordered Josephson series array. Phys. Rev. Lett., 76:404–407, 1996.CrossRefGoogle Scholar
  9. 9.
    P. M. Varangis, A. Gavrielides, T. Erneux, V. Kovanis, and L. F. Lester. Frequency entrainment in optically injected semiconductor lasers. Phys. Rev. Lett., 78:2353–2356, 1997.CrossRefGoogle Scholar
  10. 10.
    A. Hohl, A. Gavrielides, T. Erneux, and V. Kovanis. Localized synchronization in two coupled nonidentical semiconductor lasers. Phys. Rev. Lett., 78:4745–4748, 1997.CrossRefGoogle Scholar
  11. 11.
    G. Grüner and A. Zettl. Charge-density wave conduction – a novel collective transport phenomenon in solids. Phys. Rep., 119:117–232, 1985.CrossRefGoogle Scholar
  12. 12.
    J. Benford, H. Sze, W. Woo, R. R. Smith, and B. Harteneck. Phase locking of relativistic magnetrons. Phys. Rev. Lett., 62:969–971, 1989.CrossRefGoogle Scholar
  13. 13.
    I. Schreiber and M. Marek. Strange attractors in coupled reaction diffusion cells. Physica, 5D:258–272, 1982.MathSciNetGoogle Scholar
  14. 14.
    M. F. Crowley and I. R. Epstein. Experimental and theoretical studies of a coupled chemical oscillator: Phase death, multistability, and in-phase and out-of-phase entrainment. J. Phys. Chem., 93:2496–2502, 1989.CrossRefGoogle Scholar
  15. 15.
    M. Dolnik and I. R. Epstein. Coupled chaotic chemical oscillators. Phys. Rev. E, 54:3361–3368, 1996.CrossRefGoogle Scholar
  16. 16.
    M. Kawato and R. Suzuki. Two coupled neural oscillators as a model of the circadian pacemaker. J. Theor. Biol., 86:547–575, 1980.CrossRefMathSciNetGoogle Scholar
  17. 17.
    Y. Kuramoto. Cooperative dynamics of oscillator community. Prog. Theor. Phys. Suppl., 79:223–240, 1984.CrossRefGoogle Scholar
  18. 18.
    H. Daido. Intrinsic fluctuations and a phase transition in a class of large populations of interacting oscillators. J. Stat. Phys., 60:753–800, 1990.CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    S. Strogatz. Sync: The Emerging Science of Spontaneous Order. Hyperion, New York, 2003.Google Scholar
  20. 20.
    Y. Aizawa. Synergetic approach to the phenomena of mode-locking in nonlinear systems. Prog. Theor. Phys., 56:703–716, 1976.CrossRefGoogle Scholar
  21. 21.
    M. Shiino and M. Frankowicz. Synchronization of infinitely many coupled limit-cycle oscillators. Phys. Lett. A, 136:103–108, 1989.CrossRefMathSciNetGoogle Scholar
  22. 22.
    M. Poliashenko and S. R. McKay. Chaos due to homoclinic orbits in two coupled oscillators with nonisochronism. Phys. Rev. A, 46:5271–5274, 1992.CrossRefGoogle Scholar
  23. 23.
    J. L. Rogers and L. T. Wille. Phase transitions in nonlinear oscillator chains. Phys. Rev. E, 54:R2193–R2196, 1996.CrossRefGoogle Scholar
  24. 24.
    D. G. Aronson, G. B. Ermentrout, and N. Kopell. Amplitude response of coupled oscillators. Physica D, 41:403–449, 1990.CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    R. E. Mirollo and S. H. Strogatz. Amplitude death in an array of limit-cycle oscillators. J. Stat. Phys., 60:245–262, 1990.CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    K. Bar-Eli. On the stability of coupled chemical oscillators. Physica D, 14:242–252, 1985.CrossRefMathSciNetGoogle Scholar
  27. 27.
    P. C. Matthews, R. E. Mirollo, and S. H. Strogatz. Dynamics of a large system of coupled nonlinear oscillators. Physica D, 52:293–331, 1991.CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    H. G. Schuster and P. Wagner. Mutual entrainment of two limit cycle oscillators with time delayed coupling. Prog. Theor. Phys., 81:939–945, 1989.CrossRefMathSciNetGoogle Scholar
  29. 29.
    E. Niebur, H. G. Schuster, and D. Kammen. Collective frequencies and metastability in networks of limit-cycle oscillators with time delay. Phys. Rev. Lett., 67:2753–2756, 1991.CrossRefGoogle Scholar
  30. 30.
    Y. Nakamura, F. Tominaga, and T. Munakata. Clustering behavior of time-delayed nearest-neighbor coupled oscillators. Phys. Rev. E, 49:4849–4856, 1994.CrossRefGoogle Scholar
  31. 31.
    S. Kim, S. H. Park, and C. S. Ryu. Multistability in coupled oscillator systems with time delay. Phys. Rev. Lett., 79:2911–2914, 1997.CrossRefGoogle Scholar
  32. 32.
    D. V. Ramana Reddy, A. Sen, and G. L. Johnston. Time delay induced death in coupled limit cycle oscillators. Phys. Rev. Lett., 80:5109–5112, 1998.CrossRefGoogle Scholar
  33. 33.
    D. V. Ramana Reddy, A. Sen, and G. L. Johnston. Time delay effects on coupled limit cycle oscillators at Hopf bifurcation. Physica D, 129:15–34, 1999.CrossRefMathSciNetMATHGoogle Scholar
  34. 34.
    D. V. Ramana Reddy, A. Sen, and G. L. Johnston. Experimental evidence of time-delay induced death in coupled limit-cycle-oscillators. Phys. Rev. Lett., 85:3381–3384, 2000.CrossRefGoogle Scholar
  35. 35.
    R. Dodla, A. Sen, and G. L. Johnston. Phase-locked patterns and amplitude death in a ring of delay-coupled limit cycle oscillators. Phys. Rev. E, 69:056217, 2004.CrossRefMathSciNetGoogle Scholar
  36. M. P. Mehta, A. Sen, and G. L. Johnston. Amplitude death states of a ring of nonlocally-coupled limit cycle oscillators with time delay. Proceedings of the National Conference on Nonlinear Systems and Dynamics, Chennai, Feb.5-8, 2006, 2006.Google Scholar
  37. 37.
    G. C. Sethia, A. Sen, and F. M. Atay. Clustered chimera states in delay-coupled oscillator systems. Phys. Rev. Lett., 100:144102, 2008.CrossRefGoogle Scholar
  38. 38.
    P. C. Matthews and S. H. Strogatz. Phase diagram for the collective behavior of limit cycle oscillators. Phys. Rev. Lett., 65:1701–1704, 1990.CrossRefMathSciNetMATHGoogle Scholar
  39. 39.
    S. Peles and K. Wiesenfeld. Synchronization law for a van der Pol array. Phys. Rev. E, 68:026220, 2003.CrossRefGoogle Scholar
  40. 40.
    L. L. Bonilla, C. J. Perez Vicente, F. Ritort, and J. Soler. Exactly solvable phase oscillator models with synchronization dynamics. Phys. Rev. Lett., 81:3643–3646, 1998.CrossRefGoogle Scholar
  41. 41.
    H. Daido. Multibranch entrainment and scaling in large populations of coupled oscillators. Phys. Rev. Lett., 77:1406–1409, 1996.CrossRefGoogle Scholar
  42. 42.
    G.B. Ermentrout. The behavior of rings of coupled oscillators. J. Math. Biol., 23:55–74, 1985.MathSciNetMATHGoogle Scholar
  43. 43.
    P. C. Bressloff, S. Coombes, and B. de Souza. Dynamics of a ring of pulse-coupled oscillators: Group theoretic approach. Phys. Rev. Lett., 79:2791–2794, 1997.CrossRefGoogle Scholar
  44. 44.
    M. Barahona and L.M. Pecora. Synchronization in small-world systems. Phys. Rev. Lett., 89:054101, 2002.CrossRefGoogle Scholar
  45. 45.
    Y. Kuramoto. Scaling behavior of oscillators with non-local interaction. Prog. Theor. Phys., 94:321–330, 1995.CrossRefGoogle Scholar
  46. 46.
    Y. Kuramoto and H. Nakao. Origin of power-law spatial correlations in distributed oscillators and maps with nonlocal coupling. Phys. Rev. Lett., 76:4352–4355, 1996.CrossRefGoogle Scholar
  47. 47.
    Y. Kuramoto and D. Battogtokh. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenomena in Complex Systems, 5:380–385, 2002.Google Scholar
  48. 48.
    Y. Kuramoto. Nonlinear Dynamics and Chaos:Where Do We Go from Here?, p 209. Institute of Physics, Bristol, UK, 2003.Google Scholar
  49. 49.
    J. R. Phillips, H. S. J. van der Zant, J. White, and T. P. Orlando. Influence of induced magnetic-fields on the static properties of josephson-junction arrays. Phys. Rev. B, 47:5219–5229, 1993.CrossRefGoogle Scholar
  50. 50.
    S. I. Shima and Y. Kuramoto. Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators. Phys. Rev. E, 69:036213, 2004.CrossRefGoogle Scholar
  51. 51.
    J.D. Murray. Mathematical Biology. Springer, New York, 1989.MATHGoogle Scholar
  52. 52.
    B. Ermentrout, J. Campbell, and G. Oster. A model for shell patterns based on neural activity. Veliger, 28:369–388, 1986.Google Scholar
  53. 53.
    N.V. Swindale. A model for the formation of ocular dominance stripes. Proc. R. Soc. London B, 208:243–264, 1980.CrossRefGoogle Scholar
  54. 54.
    D. Tanaka and Y. Kuramoto. Complex Ginzburg-Landau equation with nonlocal coupling. Phys. Rev. E, 68:026219, 2003.CrossRefGoogle Scholar
  55. 55.
    D. M. Abrams and S. H. Strogatz. Chimera states for coupled oscillators. Phys. Rev. Lett., 93:174102, 2004.CrossRefGoogle Scholar
  56. 56.
    D. M. Abrams and S. H. Strogatz. Chimera states in rings of nonlocally coupled oscillators. Int. J. Bifurcation Chaos, 16:21–37, 2006.CrossRefMathSciNetMATHGoogle Scholar
  57. 57.
    F. M. Atay. Distributed delays facilitate amplitude death of coupled oscillators. Phys. Rev. Lett., 91:094101, 2003.CrossRefGoogle Scholar
  58. 58.
    M. Dhamala, V. K. Jirsa, and M. Ding. Enhancement of neural synchrony by time delay. Phys. Rev. Lett., 92:74104, 2004.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Abhijit Sen
    • 1
  • Ramana Dodla
    • 2
  • George L. Johnston
    • 3
  • Gautam C. Sethia
    • 1
  1. 1.Institute for Plasma Research, BhatGandhinagarIndia
  2. 2.Department of BiologyUniversity of Texas at San AntonioSan AntonioUSA
  3. 3.EduTron Corp.WinchesterUSA

Personalised recommendations