Advertisement

Network Protocol Verification by a Classifier Selection Ensemble

  • Francesco Gargiulo
  • Ludmila I. Kuncheva
  • Carlo Sansone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5519)

Abstract

Classical approaches for network traffic classification are based on port analysis and packet inspection. Recent studies indicate that network protocols can be recognised more accurately using the flow statistics of the TCP connection. We propose a classifier selection ensemble for a fast and accurate verification of network protocols. Using the requested port number, the classifier selector directs the decision to an ensemble member responsible for this port. The chosen ensemble member ramifies the decision further using the “sign pattern” of the first four packets. Finally, a decision tree classifier labels the flow as ‘accepted’ or ‘rejected’ using the sizes of the first four packets. The ensemble has modular architecture which allows further modules to be individually trained and added. The classifiers were cross-tested using designated training and testing data of network traffic traces from three institutions. The results show that accuracy need not be sacrificed for speed of classification, and that the protocol classification is robust from one network to another.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auld, T., Moore, A.W., Gull, S.F.: Bayesian neural networks for internet traffic classification. IEEE Trans. on Neural Networks 18(1), 223–239 (2007)CrossRefGoogle Scholar
  2. 2.
    Bernaille, L., Teixeira, R., Salamatian, K.: Early application identification. In: CoNEXT 2006: Proceedings of the 2006 ACM CoNEXT conference, pp. 1–12. ACM, New York (2006)Google Scholar
  3. 3.
    Crotti, M., Dusi, M., Gringoli, F., Salgarelli, L.: Detecting http tunnels with statistical mechanisms. In: Proc. IEEE International Conference on Communications ICC 2007, pp. 6162–6168 (2007)Google Scholar
  4. 4.
    Dainotti, A., de Donato, W., Pescapè, A., Ventre, G.: Tie: a community-oriented traffic classification platform. Technical Report TR-DIS-10-2008, Dipartimento di Informatica e Sistemistica, University of Napoli Federico II (2008)Google Scholar
  5. 5.
    Dusi, M., Crotti, M., Gringoli, F., Salgarelli, L.: Detection of encrypted tunnels across network boundaries. In: Proc. IEEE International Conference on Communications ICC 2008, May 19–23, pp. 1738–1744 (2008)Google Scholar
  6. 6.
    Este, A., Gargiulo, F., Gringoli, F., Salgarelli, L., Sansone, C.: Pattern recognition approaches for classifying ip flows. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T.-Y., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) SSPR/SPR 2008. LNCS, vol. 5342, pp. 885–895. Springer, Heidelberg (2008)Google Scholar
  7. 7.
    Freire, E.P., Ziviani, A., Salles, R.M.: On metrics to distinguish skype flows from http traffic. In: Proc. Latin American Network Operations and Management Symposium LANOMS 2007, pp. 57–66 (2007)Google Scholar
  8. 8.
    Garner, S.R.: Weka: The waikato environment for knowledge analysis. In: Proc. of the New Zealand Computer Science Research Students Conference, pp. 57–64 (1995)Google Scholar
  9. 9.
    Holanda Filho, R., Fontenelle do Carmo, M.F., Maia, J., Siqueira, G.P.: An internet traffic classification methodology based on statistical discriminators. In: Proc. IEEE Network Operations and Management Symposium NOMS 2008, pp. 907–910 (2008)Google Scholar
  10. 10.
    Kuncheva, L.I.: Classifier ensembles for changing environments. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 1–15. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, Hoboken (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
    Li, Z., Yuan, R., Guan, X.: Traffic classification - towards accurate real time network applications. In: HCI, vol. (4), pp. 67–76 (2007)Google Scholar
  13. 13.
    Moore, D., Keys, K., Koga, R., Lagache, E., Claffy, K.C.: The coralreef software suite as a tool for system and network administrators. In: LISA 2001: Proceedings of the 15th USENIX conference on System administration, Berkeley, CA, USA, pp. 133–144. USENIX Association (2001)Google Scholar
  14. 14.
    Rastrigin, L.A., Erenstein, R.H.: Method of Collective Recognition. Energoizdat, Moscow (1981) (in Russian)zbMATHGoogle Scholar
  15. 15.
    Risso, F., Baldi, M., Morandi, O., Baldini, A., Monclus, P.: Lightweight, payload-based traffic classification: An experimental evaluation. In: Proc. IEEE International Conference on Communications ICC 2008, pp. 5869–5875 (2008)Google Scholar
  16. 16.
    Williams, N., Zander, S., Armitage, G.: A preliminary performance comparison of five machine learning algorithms for practical ip traffic flow classification. SIGCOMM Comput. Commun. Rev. 36(5), 5–16 (2006)CrossRefGoogle Scholar
  17. 17.
    Woods, K., Kegelmeyer, W.P., Bowyer, K.W.: Combination of multiple classifiers using local accuracy estimates. IEEE Trans. Pattern Anal. Mach. Intell. 19(4), 405–410 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Francesco Gargiulo
    • 1
  • Ludmila I. Kuncheva
    • 2
  • Carlo Sansone
    • 1
  1. 1.Dipartimento di Informatica e SistemisticaUniversità degli Studi di Napoli Federico IINapoliItaly
  2. 2.School of Computer ScienceUniversity of BangorUK

Personalised recommendations