Advertisement

Measuring and Visualising Similarity of Customer Satisfaction Profiles for Different Customer Segments

  • Frank Klawonn
  • Detlef D. Nauck
  • Katharina Tschumitschew
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5572)

Abstract

Questionnaires are a common tool to gain insight to customer satisfaction. The data available from such questionnaires is an important source of information for a company to judge and improve its performance in order to achieve maximum customer satisfaction. Here, we are interested in finding out, how much individual customer segments are similar or differ w.r.t. to their satisfaction profiles. We propose a hybrid approach using measures for the similarity of satisfaction profiles based on principles from statistics in combination with visualization techniques. The applicability and benefit of our approach is demonstrated on the basis of real-world customer data.

Keywords

customer satisfaction rank correlation MDS cluster analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borg, I., Groenen, P.: Modern multidimensional scaling: Theory and applications. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  2. 2.
    Cover, T., Thomas, J.: Elements of information theory. Wiley, New York (1991)CrossRefzbMATHGoogle Scholar
  3. 3.
    von Hagen, F., Baaken, T., Holscher, V., Plewa, C.: International research customer satisfaction surveys (Germany and Australia) and research provider surveys (Germany and Europe). Int. Journ. of Technology Intelligence and Planning 2, 210–224 (2006)CrossRefGoogle Scholar
  4. 4.
    Hwang, H.-G., Chen, R.-F., Lee, J.M.: satisfaction with internet banking: an exploratory study. Int. Journ. of Electronic Finance 1, 321–335 (2007)CrossRefGoogle Scholar
  5. 5.
    Lehmann, E.L.: Nonparametrics: Statistical methods based on ranks. Springer, Berlin (2006)zbMATHGoogle Scholar
  6. 6.
    Lowe, D., Tipping, M.E.: Feed-forward neural networks topographic mapping for exploratory data analysis. Neural Computing and Applications 4, 83–95 (1996)CrossRefGoogle Scholar
  7. 7.
    Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18, 50–60 (1947)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Nauck, D.D., Ruta, D., Spott, M., Azvine, B.: A Tool for Intelligent Customer Analytics. In: Proceedings of the IEEE International Conference on Intelligent Systems, pp. 518–521. IEEE Press, London (2006)Google Scholar
  9. 9.
    Rehm, F., Klawonn, F., Kruse, R.: MDSpolar: A new Approach for Dimension Reduction to Visualize High Dimensional Data. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds.) IDA 2005. LNCS, vol. 3646, pp. 316–327. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Rehm, F., Klawonn, F., Kruse, R.: POLARMAP – Efficient visualisation of high dimensional data. In: Banissi, E., Burkhard, R.A., Ursyn, A., Zhang, J.J., Bannatyne, M., Maple, C., Cowell, A.J., Tian, G.Y., Hou, M. (eds.) Information visualization, pp. 731–740. IEEE, London (2006)Google Scholar
  11. 11.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1, 80–83 (1945)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Frank Klawonn
    • 1
  • Detlef D. Nauck
    • 2
  • Katharina Tschumitschew
    • 1
  1. 1.Department of Computer ScienceUniversity of Applied SciencesWolfenbuettelGermany
  2. 2.BT Group, Chief Technology OfficeResearch and Venturing Intelligent Systems Research Centre Adastral ParkIpswichUK

Personalised recommendations