Probability Error in Global Optimal Hierarchical Classifier with Intuitionistic Fuzzy Observations

  • Robert Burduk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5572)


The paper considers the problem of classification error in pattern recognition. This model of classification is primarily based on the Bayes rule and secondarily on the notion of intuitionistic fuzzy sets. A probability of misclassifications is derived for a classifier under the assumption that the features are class-conditionally statistically independent, and we have intuitionistic fuzzy information on object features instead of exact information. Additionally, we consider the global optimal hierarchical classifier.


hierarchical classifier error probability intuitionistic fuzzy set 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antos, A., Devroye, L., Gyorfi, L.: Lower bounds for Bayes error estimation. IEEE Trans. Pattern Analysis and Machine Intelligence 21, 643–645 (1999)CrossRefGoogle Scholar
  2. 2.
    Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Atanassov, K., Georgeiv, C.: Intuitionistic fuzzy prolog. Fuzzy Sets and Systems 53, 121–128 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Avi-Itzhak, H., Diep, T.: Arbitrarily tight upper and lower bounds on the bayesian probability of error. IEEE Trans. Pattern Analysis and Machine Intelligence 18, 89–91 (1996)CrossRefGoogle Scholar
  5. 5.
    Burduk, R.: Probability of misclassification in Bayesian hierarchical classifier. Advances in Soft Computing 31, 341–348 (2005)CrossRefGoogle Scholar
  6. 6.
    Gerstenkorn, T., Mańko, J.: Probability of fuzzy intuitionistic sets. BUSEFAL 45, 128–136 (1990)zbMATHGoogle Scholar
  7. 7.
    Goguen, J.: L-fuzzy sets. Journal of Mathematical Analysis and Applications 18(1), 145–174 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kulkarni, A.: On the mean accuracy of hierarchical classifiers. IEEE Transactions on Computers 27, 771–776 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kuncheva, L.I.: Combining pattern classifier: Methods and Algorithms. John Wiley, New York (2004)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kurzyński, M.: On the multistage Bayes classifier. Pattern Recognition 21, 355–365 (1988)CrossRefzbMATHGoogle Scholar
  11. 11.
    Pawlak, Z.: Rough sets and fuzzy sets. Fuzzy Sets and Systems 17, 99–102 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Supriya, K.D., Ranjit, B., Akhil, R.R.: An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets and Systems 117(2), 209–213 (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Szmidt, E., Kacprzyk, J.: An intuitionistic fuzzy set based approach to intelligent data analysis: an application to medical diagnosis. Studies In Fuzziness And Soft Computing, 57–70 (2003)Google Scholar
  14. 14.
    Szmidt, E., Kacprzyk, J.: A consensus-reaching process under intuitionistic fuzzy preference relations. International Journal of Intelligent Systems 18(7), 837–852 (2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    Wozniak, M.: Two-stage classifier for diagnosis of hypertension type. In: Maglaveras, N., Chouvarda, I., Koutkias, V., Brause, R. (eds.) ISBMDA 2006. LNCS (LNBI), vol. 4345, pp. 433–440. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Zadeh, L.A.: Probability measures of fuzzy events. Journal of Mathematical Analysis and Applications 23, 421–427 (1968)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Robert Burduk
    • 1
  1. 1.Chair of Systems and Computer NetworksWroclaw University of TechnologyWroclawPoland

Personalised recommendations