RecMas: A Multiagent System Socioconfiguration Recommendations Tool

  • Luis F. Castillo
  • Manuel G. Bedia
  • Ana L. Uribe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5572)


This paper presents a multiagent recommendation system (RecMAS) able to coordinate the interactions between a user agent (AgUser) and a set of commercial agents (AgComs) providing a useful service for monitoring changes in the AgUser’s beliefs and decisions based on two parameters: (i) the strength of its own beliefs and (ii) the strength of the AgComs’ suggestions. The system was used to test several commercial activities in a shopping centre where the AgComs (AgComs) provided information to an AgUser operating in a wireless device (PDA, mobile phone, etc.) used by a client. The AgUser received messages adapted for conditions of particular offers of interest to the client. Using a theoretical model and a set of simulation experiments, commercial strategies in relation with the socio-dynamics of the system were obtained. This paper concludes with a presentation of a prototype in a real shopping centre.


SocioConfiguration Multiagent systems Agent-based social simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Durfee, E.H.: Designing Organizations for Computational Agents. In: Prietula, M., Carley, K., Gasser, L. (eds.) Simulating Organizations: Computational Models of Institutions and Groups. AAAI Press and MIT Press, Menlo Park, CA (1998)Google Scholar
  2. 2.
    Gilbert, N., Doran, J. (eds.): Simulating Societies: The computer simulation of Social processes. University College, Londos (1994)Google Scholar
  3. 3.
    Helbing, D.: Quantitatuve Sociodynamics, Stochastic Methods and Models of Social Interaction Processes. Kluwer Academic, Dordrecht (1995)zbMATHGoogle Scholar
  4. 4.
    Weidlich, W.: Physics and social science - The approach of synergetics. Phys. Rep. 204, 1–163 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Weidlich, W.: Synergetic modelling concepts for sociodynamics with application to collective political opinion formation. J. Math. Sociol. 18, 267–291 (1994)CrossRefzbMATHGoogle Scholar
  6. 6.
    Epstein, J.M., Axtell, R.: Growing Artificial Societies: Social Science from the Bottom Up. MIT Press/Brookings Institution Press (1996)Google Scholar
  7. 7.
    Koch, F., John-Jules, M., Frank, D., Iyad, R.: Programming Deliberative Agents for Mobile Services: the 3APL-M Platform. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) PROMAS 2005. LNCS, vol. 3862, pp. 222–235. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems 15 (2000)Google Scholar
  9. 9.
    Berhard Bauer, J.P.M., Odell, J.: Agent Uml: A Formalism For Specifying Multiagent Interaction. In: Luck, M., Padgham, L. (eds.) Agent-Oriented Software Engineering VIII. LNCS, vol. 4951, pp. 91–103. Springer, Heidelberg (2008)Google Scholar
  10. 10.
  11. 11.
    Corchado, J.M., Gonzalez-Bedia, M., De Paz, Y., Bajo, J., De Paz, J.F.: Replanning mechanism for deliberative agents in dynamic changing environments. Computational Intelligence, Pág 24(2), 77–107 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Luis F. Castillo
    • 1
  • Manuel G. Bedia
    • 2
  • Ana L. Uribe
    • 1
  1. 1.Grupo investigación Ingeniería del SoftwareUniversidad Autónoma de ManizalesAntigua Estación del FerrocarrilColombia
  2. 2.Departamento InformáticaUniversidad de ZaragozaZaragozaSpain

Personalised recommendations