A Vehicle Routing Problem Solved by Agents

  • Ma Belén Vaquerizo García
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5572)


The main purpose of this study is to find out a good solution to the vehicle routing problem considering heterogeneous vehicles.

This problem tries to solve the generation of paths and the assignment of buses on these routes. The objective of this problem is to minimize the number of vehicles required and to maximize the number of demands transported.

This paper considers a Memetic Algorithm for the vehicle routing problem with heterogeneous fleet for any transport problem between many origins and many destinations. A Memetic Algorithm always maintains a population of different solutions to the problem, each of which operates as an agent. These agents interact between themselves within a framework of competition and cooperation.

Extensive computational tests on some instances taken from the literature reveal the effectiveness of the proposed algorithm.


Vehicle Routing Problem Heterogeneous Fleet Evolutionary Algorithms Memetic Algorithms Agents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alba, E., Cotta, C., Herrera, F.: Computación Evolutiva. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial (1998)Google Scholar
  2. 2.
    Buriol, L., Franca, P.M., Moscato, P.: A new memetic algorithm for the asymmetric traveling salesman problem. Journal of Heuristics 10 (2004)Google Scholar
  3. 3.
    Carrascosa, C., Bajo, J., Julian, V., Corchado, J.M.L., Botti, V.J.: Hybrid multi-agent architecture as a real-time problem-solving model. Expert Syst. Appl. (ESWA) 34(1), 2–17 (2008)CrossRefGoogle Scholar
  4. 4.
    Cotta, C.: Una visión general de los algoritmos meméticos. Rect@ 3, 139–166 (2007)Google Scholar
  5. 5.
    García, S., Cano, J.R., Herrera, J.R.: A memetic algorithm for evolutionary prototype selection: A scaling up approach. Pattern Recognition (PR) 41(8), 2693–2709 (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Gutin, G., Karapetyan, D.: A Memetic Algorithm for the Generalized Traveling Salesman Problem. CoRR abs/0804.0722 (2008)Google Scholar
  7. 7.
    Handa, H., Chapman, L., Yao, X.: Robust Salting Route Optimization Using Evolutionary Algorithms. Evolutionary Computation in Dynamic and Uncertain Environments (2007)Google Scholar
  8. 8.
    Molina, D., Lozano, M., García-Martínez, C., Herrera, C.: Memetic Algorithm for Intense Local Search Methods Using Local Search Chains. In: Hybrid Metaheuristics 2008, pp. 58–71 (2008)Google Scholar
  9. 9.
    Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem. Computers and Operations Research (2004)Google Scholar
  10. 10.
    Rodrigues, A.M., Soeiro Ferreira, J.: Solving the rural postman problem by memetic algorithms. In: de Sousa, J.P. (ed.) Proceedings of the 4th Metaheuristic International Conference (MIC 2001), Porto, Portugal (2001)Google Scholar
  11. 11.
    Tavakkoli-Moghaddam, R., Saremi, A.R., Ziaee, M.S.: A memetic algorithm for a vehicle routing problem with backhauls. Applied Mathematics and Computation 181 (2006)Google Scholar
  12. 12.
    Wei, P., Cheng, L.X.: A hybrid genetic algorithm for function optimization. Journal of Software 10(8), 819–823 (1999)Google Scholar
  13. 13.
    Jin, X., Abdulrab, H., Itmi, M.: A multi-agent based model for urban demand-responsive passenger transport services. In: IJCNN 2008, pp. 3668–3675 (2008)Google Scholar
  14. 14.
    Wang, Y., Qin, J.: A Memetic-Clustering-Based Evolution Strategy for Traveling Salesman Problems. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS, vol. 4481, pp. 260–266. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ma Belén Vaquerizo García
    • 1
  1. 1.Languages and Systems AreaBurgos UniversityBurgosSpain

Personalised recommendations