Survey of Business Intelligence for Energy Markets

  • Manuel Mejía-Lavalle
  • Ricardo Sosa R.
  • Nemorio González M.
  • Liliana Argotte R.
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5572)

Abstract

Today, there is the need for establishing a strong relationship between Business Intelligence (BI) and Energy Markets (EM). This is crucial because of enormous and increasing data volumes generated and stored day by day in the EM. The data volume turns impossible to obtain clear data understanding through human analysis or with traditional tools. BI can be the solution. In this sense, we present a comprehensive survey related with the BI applications for the EM, in order to show trends and useful methods for tackling down every day EM challenges. We outline how BI approach can effectively support a variety of difficult and challenging EM issues like prediction, pattern recognition, modeling and others. We can observe that hybrid artificial intelligence systems are common in EM. An extensive bibliography is also included.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhatnagar, R., Rao, C.: Energy resource management based on data mining and AI. In: Proceedings ACEEE Summer Study on Energy Efficiency in Industry, Cincinnati, vol. 6, pp. 14–23 (2005) Google Scholar
  2. 2.
    McKay, L.: Business intelligence comes out of the back office. CRM magazine (June 2008)Google Scholar
  3. 3.
    Wu, F.F., Varaiya, P.: Coordinated multilateral trades for electric power networks: theory and implementation 1. Electrical Power and Energy Systems 21, 75–102 (1999)CrossRefGoogle Scholar
  4. 4.
    Xu, Z., Dong, Z.Y., Liu, W.Q.: Neural network models for electricity market forecasting. In: Proc. of 4th Australian Workshop on Signal Processing and its applications, Australia (1996)Google Scholar
  5. 5.
    Sun, W., Lu, J., He, Y.: Information Entropy Based Neural Network Model for Short-Term Load Forecasting. In: Transmision and Distrib. Conference: Asia and Pacific IEEE/PES, pp. 1–5 (2005)Google Scholar
  6. 6.
    Sheble, G.: Artificial life techniques for market data mining and emulation. Artificial life techniques for market data mining and emulation 3, 1696–1699 (2000)Google Scholar
  7. 7.
    Sánchez-Ubeda, E.F., Muñoz, A., Villar, J.: Minería y visualización de datos del mercado eléctrico español. III Taller Nacional de Minería de Datos y Aprendizaje. Madrid (2005)Google Scholar
  8. 8.
    Andrade, F., Camargo, C., Teive, R.: Aplicação de técnicas de mineração de dados para a previsão de demanda no médio prazo. Encontro Regional Ibero-americano do CIGRÉ. Brasil (2007)Google Scholar
  9. 9.
    Richeldi, M.: A business intelligence solution for energy budget control. In: Proc. of the 3rd Int. Conf. on the Practical Application of Knowledge Discovery and Data Mining, pp. 167–178 (1999)Google Scholar
  10. 10.
    Verdu, V., Garcia, S.: Classification, filtering, and identification of electrical customer load patterns through the use of SOMs. IEEE Transactions on Power Systems, 1672–1682 (2006)Google Scholar
  11. 11.
    Xu, T., He, R.: Appls. of data mining for power system trans. stability prediction. In: Proc. IEEE Int. Conf.Electric Utility Deregulation, Restructuring & Power Tehnologies, pp. 389–392 (2004)Google Scholar
  12. 12.
    Sánchez, E., Peco, J., Raymont, P., Gomez, T.: App. of data mining techniques to identify structural congestion problems under uncertainty. Porto Power Tech. Proceedings 1, 6–14 (2001)Google Scholar
  13. 13.
    Wu, S., Wu, Y., Wang, Y., Ye, Y.: An algorithm for time series data mining based on clustering. Sch. of Computing Science and Technology (2006)Google Scholar
  14. 14.
    Felden, C., Chamoni, P.: Web farming and data warehousing for energy tradefloors. In: Proceedings IEEE/WIC International Conference on Web Intelligence, pp. 642–647 (2003)Google Scholar
  15. 15.
    Widjaja, M., Mielczarski, W.: A Fuzzy-Based Approach to Analyze System Demand in the Australian Electricity Market. In: Power Engineering Society Summer Meeting, pp. 918–923. IEEE, Los Alamitos (1999)Google Scholar
  16. 16.
    Samper, M.E., Vargas, A.: Costos de generación distribuida bajo incertidumbres empleando técnicas Fuzzy. In: Enc. Regional Ibero-americano CIGRÉ Foz do Iguazú, Paraná, pp. 20–24 (2007)Google Scholar
  17. 17.
    Srinivasan, D., Woo, D., Rachmawati, L., Wei Lye, K.: Evolving Cooperative Behavior in a Power Market. In: Genetic and evolutionary computation conference. Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp. 1599–1600 (2006)Google Scholar
  18. 18.
    Lobato, E., Ugedo, A., Rouco, R., Echavarren, F.M.: Decision Trees Applied to Spanish Power Systems Applications. Sch. of Engineering (2006)Google Scholar
  19. 19.
    Voumvoulakis, E.M., Gavoyiannis, A.E., Hatziargyriou, N.: Decision trees for dynamic security assessment and load shedding scheme. In: Power Eng. Soc. General Meeting, Atenas, pp. 7–15 (2006)Google Scholar
  20. 20.
    Li, F., Runger, G.C., Tuv, E.: Change-point detection with supervised learning and feature selection. International Journal of Production Research, 2853–2868 (2006)Google Scholar
  21. 21.
    Kitayama, M., Matsubara, R., Izui, Y.: Data mining for customer load profile analysis. In: Proc. IEEE Power Eng. Society Transmission and Distribution Conference, pp. 654–655 (2002) Google Scholar
  22. 22.
    Troncoso, A., Riquelme, J., Gómez, A., Martínez, J., Riquelme, J.: Electricity Market Price Forecasting Based on Weighted Nearest Neighbors Techniques. IEEE Transactions on Power Systems (2007)Google Scholar
  23. 23.
    Bagnall, A.J.: Autonomous Adaptive Agents in Simulations of the UK Market in Electricity. University of East Anglia (2004)Google Scholar
  24. 24.
    Cheong, M., Sheble, G.: Knowledge extraction and data mining for the competitive electricity auction market. In: Int. Conf. on Prob. Methods Applied to Power Systems, Iowa, pp. 221–229 (2006)Google Scholar
  25. 25.
    Praca, I., Ramos, C., Vale, Z.: A new agent-based framework for the simulation of electricity markets. In: Intelligent Agent Technology, IEEE/WIC Int. Conference, pp. 469–473 (2003)Google Scholar
  26. 26.
    Geoff, J., Cohen, D., Dodier, R., Platt, G., Palmer, D.: A Deployed Multi-Agent Framework for Distributed Energy Applications. In: Int. Conf. on Autonomous Agents, 676–678 (2006)Google Scholar
  27. 27.
    Herrera, F.: Propuesta del Grupo de la Universidad de Sevilla para MINDAT-PLUS. Minería de datos para los usuarios en diferentes áreas de aplicación (2006)Google Scholar
  28. 28.
    Da Silva Lima, W., De Andrade Freitas, E.N.: A multi agent based simulator for Brazilian wholesale electricity energy market. In: First-Order Dynamic Logic. LNCS, pp. 68–77. Springer, Heidelberg (1979)Google Scholar
  29. 29.
    Kok, J.K., Kamphuis, I.G.: PowerMatcher: Multiagent Control in the Electricity Infrastructure. In: International Conference on Automous Agents, pp. 75–82 (2005)Google Scholar
  30. 30.
    Fujii, Y., Okamura, T., Inagaki, K.: Basic analysis of the pricing processes in modeled electricity markets with multi-agent simulation. Restructuring & Power Tech., Tokyo, 257–261 (2004)Google Scholar
  31. 31.
    Karbovskii, I.N., Lukatskii, A.M., Fedorova, G.V., Shapot, D.V.: A small model of market behavior. Automation and Remote Control, Moscow, 654–665 (2002)Google Scholar
  32. 32.
    Debs, A., Hansen, C., Yu-Chi, W., Hirsch, P., Szot, L.: Bidding strategies for GENCO’s in the short-term electricity market simulator (STEMS). In: Proceedings of the IASTED International Conference on Intelligent Systems and Control, Salzburg, Austria, pp. 135–139 (2003)Google Scholar
  33. 33.
    Rico, J., Flores, J., Sotomane, C., Calderon, F.: Extracting temporal patterns from time series data bases for prediction of electrical demand. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 21–29. Springer, Heidelberg (2004)Google Scholar
  34. 34.
    Athanasopoulou, C., Chatziathanasiou, V., Komminou, M., Petkani, Z.: Applying knowledge engineering and data mining for optimization of control monitoring of power plants. In: Proceeding (521) European Power and Energy Systems (2006) Google Scholar
  35. 35.
    Cruz, R.D., Carrillo, G., Pinzón, S.: Metodología para la monitorización del mercado eléctrico a partir de Inteligencia Competitiva. Encontro Regional Ibero-americano do CIGRÉ (2007)Google Scholar
  36. 36.
    Zeripour, H., Bhattacharya, K., Canizares, C.: Forecasting the hourly Ontario energy price by multivariate adaptive regression splines. In: IEEE Power Eng. Society General Meeting, pp. 7–15 (2006)Google Scholar
  37. 37.
    Zhao, J.H., Li, X., Wong, K.P.: A general method for electricity market price spike analysis. In: IEEE Power Engineering Society General Meeting, pp. 286–293 (2005)Google Scholar
  38. 38.
    Lu, X., Dong, Z.Y., Li, X.: Electricity market price spike forecast with data mining techniques. Electric Power Systems Research, 19–29 (2005)Google Scholar
  39. 39.
    Zhao, J.H., Dong, Z.Y., Li, X., Wong, K.P.: A framework for electricity price spike analysis with advanced data mining methods. IEEE Trans. on Power Systems 22(1), 376–385 (2007)CrossRefGoogle Scholar
  40. 40.
    Dongjie, X., Peng, W., Renmu, H., Tao, X.: Small signal stability analysis and control in market environment. In: IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies, vol. 1, pp. 322–325 (2004)Google Scholar
  41. 41.
    Zhenfyou, H., Qingquan, Q., Zhibing, W.: Wavelet Analysis and Electric Power Market E-Commerce. In: Proceedings of the 4th International Conference on Parallel and Distributed Computing, Applications and Technologies, pp. 725–729 (2003)Google Scholar
  42. 42.
    Vucetic, S., Tomsovic, K., Obradovic, Z.: Discovering price-load relationships in California’s electricity market. IEEE Transactions on Power Systems, 280–286 (2001)Google Scholar
  43. 43.
    Duarte, F., Rodrigues, F., Figueiredo, V., Vale, Z., Cordeiro, M.: Data Mining Techniques Applied to Electric Energy Consumers Characterization. In: Proceedings of the Seventh IASTED International Conference on Artificial Intelligence and Soft Computing, Oporto, pp. 105–110 (2003)Google Scholar
  44. 44.
    Nizar, A.H., Dong, Z.Y., Zhao, J.H.: Load profiling and data mining techniques in electricity deregulated market. In: IEEE Power Engineering Society General Meeting, vol. 7 (2006)Google Scholar
  45. 45.
    Peng, J.-T., Chien, C.F., Tseng, T.L.: Rough set theory for data mining for fault diagnosis on distribution feeder. In: IEEE Proc. of Generation, transmission and distribution, pp. 689–697 (2004)Google Scholar
  46. 46.
    Ramos, S., Vale, Z., Santana, J., Rodrigues, F.: An application to the consumer-supplier relationship supported by data mining techniques for MV customers. WSEAS Trans.Power Systems, 1350–1357 (2006)Google Scholar
  47. 47.
    Cannataro, M., Curci, W., Giglio, M.: A priority-based transmission protocol for congested networks supporting incremental computations. In: Proceedings International Conference on Information Technology: Coding and Computing, pp. 383–388 (2001)Google Scholar
  48. 48.
    Frezzi, P., Garcés, F., Haubrich, H.J.: Analysis of short-term strategic behavior in power markets. Encontro Regional Ibero-americano do CIGRÉ (2007)Google Scholar
  49. 49.
    Wirth, J.: Information quality. Top 10 Trends in Business Intelligence (2006)Google Scholar
  50. 50.
    Taft, J.: The Intelligent Power Grid (2005)Google Scholar
  51. 51.
    Cherian, S., Ambrosio, R.S.: Towards realizing the GridWise [trademark] vision: Integrating the operations and behavior of dispersed energy devices, consumers, and markets. In: IEEE PES Power Systems Conference and Exposition, pp. 1–6 (2004)Google Scholar
  52. 52.
    Alcocer Morales, Y.E., Chiesara Sanchez, A.F., Galiasso, Y.R.E.: Nuevo mercadeo de la energia para nuevos usuarios. Vision Tecnologica, 121–130 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Manuel Mejía-Lavalle
    • 1
  • Ricardo Sosa R.
    • 2
  • Nemorio González M.
    • 2
  • Liliana Argotte R.
    • 1
  1. 1.Instituto de Investigaciones EléctricasCuernavaca, MorelosMéxico
  2. 2.Centro Nacional de Control de Energía CFEMéxico

Personalised recommendations