Advertisement

EP-MAS.Lib: A MAS-Based Evolutionary Program Approach

  • Mauricio Paletta
  • Pilar Herrero
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5572)

Abstract

Evolutionary/Genetic Programs (EPs) are powerful search techniques used to solve combinatorial optimization problems in many disciplines. Unfortunately, depending on the complexity of the problem, they can be very demanding in terms of computational resources. However, advances in Distributed Artificial Intelligence (DAI), Multi-Agent Systems (MAS) to be more specific, could help users to deal with this matter. In this paper we present an approach in which both technologies, EP and MAS, are combined together aiming to reduce the computational requirements, allowing a response within a reasonable period of time. This approach, called EP-MAS.Lib, is focusing on the interaction among agents in the MAS, and emphasizing on the optimization obtained by means of the evolutionary algorithm/technique. For evaluating the EP-MAS.Lib approach, the paper also presents a case study based on a problem related with the configuration of a neural network for a specific purpose.

Keywords

Evolutionary Program Multi-Agent System Combinatorial Optimization Problem JADE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arenas, M.G., Collet, P., Eiben, A.E., Jelasity, M., Merelo, J.J., Paechter, B., Preub, M., Schoenauer, M.: A Framework for Distributed Evolutionary Algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 665–675. Springer, Heidelberg (2002)Google Scholar
  2. 2.
    Bellifemine, F., Poggi, A., Rimassa, G.: JADE – A FIPA-compliant agent framework. Telecom Italia internal technical report. In: Proc. International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAM 1999), pp. 97–108 (1999)Google Scholar
  3. 3.
    Berntsson, J.: G2DGA: an adaptive framework for internet-based distributed genetic algorithms. In: Proc. of the 2005 workshops on Genetic and Evolutionary Computation (GECCO), pp. 346–349 (2005)Google Scholar
  4. 4.
    Chmiel, K., Tomiak, D., Gawinecki, M., Kaczmarek, P., Szymczak, M., Paprzycki, M.: Testing the Efficiency of JADE Agent Platform. In: Proc. 3rd Int. Symposium on Parallel and Distributed Computing (ISPDC), pp. 49–57. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  5. 5.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)CrossRefMATHGoogle Scholar
  6. 6.
    Ferber, J.: Les systems multi-agents, Vers une intelligence collective, pp. 1–66. InterEditions, Paris (1995)MATHGoogle Scholar
  7. 7.
    Foundation for Intelligent Physical Agents: FIPA ACL Message Structure Specification, SC00061, Geneva, Switzerland (2002), http://www.fipa.org/specs/fipa00061/index.html
  8. 8.
    Jain, L.C., Palade, V., Srinivasan, D.: Advances in Evolutionary Computing for System Design. Studies in Computational Intelligence, vol. 66. Springer, Heidelberg (2007)MATHGoogle Scholar
  9. 9.
    Laredo, J.L.J., Eiben, E.A., Schoenauer, M., Castillo, P.A., Mora, A.M., Merelo, J.J.: Exploring Selection Mechanisms for an Agent-Based Distributed Evolutionary Algorithm. In: Proceedings Genetic and Evolutionary Computation Conference (GECCO), pp. 2801–2808. ACM, New York (2007)Google Scholar
  10. 10.
    Lee, W.: Parallelizing evolutionary computation: A mobile agent-based approach. Expert Systems with Applications 32(2), 318–328 (2007)CrossRefGoogle Scholar
  11. 11.
    Meng, A., Ye, L., Roy, D., Padilla, P.: Genetic algorithm based multi-agent system applied to test generation. Computers & Education 49, 1205–1223 (2007)CrossRefGoogle Scholar
  12. 12.
    Paletta, M., Herrero, P.: Learning Cooperation in Collaborative Grid Environments to Improve Cover Load Balancing Delivery. In: Proc. IEEE/WIC/ACM Joint Conferences on Web Intelligence and Intelligent Agent Technology, pp. 399–402. IEEE Computer Society, Los Alamitos (2008) E3496Google Scholar
  13. 13.
    Vacher, J.P., Galinho, T., Lesage, F., Cardon, A.: Genetic Algorithms in a Multi-Agent system. In: Proc. IEEE International Joint Symposia on Intelligent and Systems, pp. 17–26 (1998) ISBN: 0-8186-8545-4Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mauricio Paletta
    • 1
  • Pilar Herrero
    • 2
  1. 1.Centro de Investigación en Informática y Tecnología de la Computación (CITEC)Universidad Nacional de Guayana (UNEG)Ciudad GuayanaVenezuela
  2. 2.Facultad de InformáticaUniversidad Politécnica de MadridMadridSpain

Personalised recommendations