Architecture for Hybrid Robotic Behavior

  • David Billington
  • Vladimir Estivill-Castro
  • René Hexel
  • Andrew Rock
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5572)


Software architectures for agent technology and robots have been polarized between reactive architectures and architectures based on planning and reasoning. Although hybrid architectures have been shown to offer benefits from both, these seem complicated to integrate. In this paper we integrate the reactive nature of finite state machines and the reasoning capabilities of non-monotonic logics to produce intelligent autonomous robots. In particular, we demonstrate this with a robotic poker player. The robotic player integrates vision, sound recognition, motion control and the reasoning to perform competitively as a player in a complex game with incomplete information.


Non-monotonic logics finite state machines software patterns software engineering software architecture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wichert, G.V., Lawitzky, G.: Man-machine interaction for robot applications in everyday environments. In: IEEE Int. Workshop on Robot and Human Interactive Communications, Bordeaux, Paris, pp. 343–346 (2001)Google Scholar
  2. 2.
    Clarkson, J., Dowland, B., Cipolla, R.: The use of prototypes in the design of interactive machines. In: Int. Conf. Engineering Design ICED 1997, Tampere (1997)Google Scholar
  3. 3.
    Tzafestas, S., Tzafestas, E.: Human-Machine interaction in intelligent robotic systems: A unifying consideration with implementation examples. J. Intelligent and Robotic Systems 32(2), 119–141 (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Breazeal, C., Takanishi, A., Kobayashi, T.: Social robots that interact with people. Springer Handbook of Robotics, pp. 1349–1369. Springer, Berlin (2008)Google Scholar
  5. 5.
    Sankar, N. (ed.): Human-Robot Interaction. I-Tech Education, Vienna (2007)Google Scholar
  6. 6.
    Vassos, S., Levesque, H.: Progression of situation calculus action theories with incomplete information. In: 20th IJCAI, Hyderabad, India, pp. 2024–2029 (2007)Google Scholar
  7. 7.
    Trevizan, F.W., de Barros, L., Corrêa da Silva, F.: Designing logic-based robots. Inteligencia Artificial 10(31), 11–22 (2006)CrossRefGoogle Scholar
  8. 8.
    Antoniou, G.: Nonmonotonic Reasoning. MIT Press, Cambridge (1997)MATHGoogle Scholar
  9. 9.
    Billington, D., Rock, A.: Propositional plausible logic: Introduction and implementation. Studia Logica 67, 243–269 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Rock, A., Billington, D.: An implementation of propositional plausible logic. In: 23rd Australasian Computer Science Conf. of Australian CSC, vol. 22(1), pp. 204–210 (2000)Google Scholar
  11. 11.
    Billington, D.: The proof algorithms of plausible logic form a hierarchy. In: Zhang, S., Jarvis, R. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 796–799. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Plausible logic facilitates engineering the behavior of autonomous robots (submitted)Google Scholar
  13. 13.
    Xin, M., Sharlin, E.: Playing games with robots — a method for evaluating human-robot interaction. In: Sankar, N. (ed.) Human-Robot Interaction, Vienna, Austria, ch. 26, pp. 469–480. I-Tech Education and Publishing (2007)Google Scholar
  14. 14.
    Schiffel, S., Thielscher, M.: Fluxplayer: A successful general game player. In: Twenty-Second AAAI Conf. on Artificial Intelligence, pp. 1191–1196. AAAI Press, Menlo Park (2007)Google Scholar
  15. 15.
    Lovell, N.: Machine Vision as the Primary Sensory Input for Mobile, Autonomous Robots. PhD thesis, School of ICT, Griffith University, Nathan, QLD (2006)Google Scholar
  16. 16.
    Estivill-Castro, V., Seymon, S.: Mobile robots for an e-mail interface for people who are blind. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS, vol. 4434, pp. 338–346. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley, NY (2002)Google Scholar
  18. 18.
    Liu, T.X.W., Baltes, J.: An intuitive and flexible architecture for intelligent mobile robots. In: 2nd Int. Conf. Autonomous Robots and Agents, NZ, pp. 52–57 (2004)Google Scholar
  19. 19.
    Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development. Prentice-Hall, NJ (1995)Google Scholar
  20. 20.
    Jeffries, D., Anderson, A., Hendrickson, C.: Extreme Programming Installed. Addison-Wesley, MA (2001)Google Scholar
  21. 21.
    Compton, P., et al.: Ripple down rules: possibilities and limitations. In: 6th Banf AAAI Knowledge Acquisiiton for Knowledge Based Systems Workshop (1991)Google Scholar
  22. 22.
    Heintz, F., Rudol, P., Doherty, P.: Bridging the sense-reasoning gap using dyknow: A knowledge processing middleware framework. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS, vol. 4667, pp. 460–463. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, MA (1995)MATHGoogle Scholar
  24. 24.
    Kim, J.H., Lee, K.H., Kim, Y.D.: The origin of artificial species: Generic robot. Int. J. Control, Automationa, and Systmes 3(4), 564–570 (2005)Google Scholar
  25. 25.
    Hayes-Roth, B.: A blackboard architecture for control. In: Distributed Artificial Intelligence, pp. 505–540. Morgan Kaufmann, San Francisco (1988)Google Scholar
  26. 26.
    Rumbaugh, J.R., Blaha, M.R., Lorensen, W., Eddy, F., Premerlani, W.: Object-Oriented Modeling and Design. Prentice-Hall, NJ (1991)MATHGoogle Scholar
  27. 27.
    Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Non-monotonic reasoning for localisation in robocup. In: Australasian Conf. on Robotics and Automation, Sydney, Australian Robotics and Automation Association (2005)Google Scholar
  28. 28.
    Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Using temporal consistency to improve robot localisation. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS, vol. 4434, pp. 232–244. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Non-monotonic reasoning on board a sony AIBO. In: Lima, P. (ed.) Robotic Soccer, ch. 3, Vienna, Austria, pp. 45–70. I-Tech Education and Publishing (2007)Google Scholar
  30. 30.
    Brooks, R.: Intelligence without reason. In: 12th ICJAI, Sydney, Australia, pp. 569–595. Morgan Kaufmann, San Francisco (1991)Google Scholar
  31. 31.
    Brooks, R.: How to build complete creatures rather than isolated cognitive simulators. In: Architectures for Intelligence, pp. 225–239. Lawrence Erlbaum, Mahwah (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • David Billington
    • 1
  • Vladimir Estivill-Castro
    • 2
  • René Hexel
    • 1
  • Andrew Rock
    • 1
  1. 1.ICT/IIISGriffith UniversityNathanAustralia
  2. 2.Visiting ScholarUniversitat Popeu FabraBarcelonaSpain

Personalised recommendations