Advertisement

Abstract

In recent years we have seen a rising interest in brain-computer interfacing for human-computer interaction and potential game applications. Until now, however, we have almost only seen attempts where BCI is used to measure the affective state of the user or in neurofeedback games. There have hardly been any attempts to design BCI games where BCI is considered to be one of the possible input modalities that can be used to control the game. One reason may be that research still follows the paradigms of the traditional, medically oriented, BCI approaches. In this paper we discuss current BCI research from the viewpoint of games and game design. It is hoped that this survey will make clear that we need to design different games than we used to, but that such games can nevertheless be interesting and exciting.

Keywords

Brain-computer Interfacing Multimodal Interaction Game Design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartolo, A., Benuzzi, F., Nocetti, L., Baraldi, P., Nichelli, P.: Humor Comprehension and Appreciation: An fMRI Study. Journal of Cognitive Neuroscience 18(11), 1789–1798 (2006)CrossRefGoogle Scholar
  2. 2.
    Bayliss, J.D.: Use of the evoked potential p3 component for control in a virtual apartment. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11(2), 113–116 (2003)CrossRefGoogle Scholar
  3. 3.
    Bayliss, J.D., Inverso, S.A., Tentler, A.: Changing the P300 Brain Computer Interface. CyberPsychology & Behavior 7(6), 694–704 (2004)CrossRefGoogle Scholar
  4. 4.
    Cairns, P., Cox, A., Berthouze, N., Dhoparee, S., Jennett, C.: Quantifying the experience of immersion in games. In: Cognitive Science of Games and Gameplay workshop at Cognitive Science (2006)Google Scholar
  5. 5.
    Csikszentmihalyi, M.: Flow: the psychology of optimal experience. Harper & Row, New York (1990)Google Scholar
  6. 6.
    De Mey, T.: Tales of the Unexpected: Incongruity-Resolution in Humor Comprehension, Scientific Discovery and Thought Experimentation. Logic and Logical Philosophy 14, 69–88 (2005)Google Scholar
  7. 7.
    Emotiv Systems, www.emotiv.com
  8. 8.
    FitzPatrick, I.: Effects of sentence context in L2 natural speech comprehension. Proc. of the Cognitive Neuroscience Master of the Radbout University 2(1), 43–56 (2007)MathSciNetGoogle Scholar
  9. 9.
    FUGA, Fun of Gaming: Measuring the Human Experience of Media Enjoyment. Project funded by the European Commission under the 6th Framework Programme: New and Emerging Science and Technology (NEST) (2006), http://project.hkkk.fi/fuga/
  10. 10.
    Gilleade, K., Dix, A., Allanson, J.: Affective Videogames and Modes of Affective Gaming: Assist Me, Challenge Me, Emote Me. In: Proc. DIGRA 2005 (2005)Google Scholar
  11. 11.
    Guger, C., Edlinger, G.: How many people can control a brain-computer interface (BCI)? In: Nijholt, A., Tan, D. (eds.) Proc. BrainPlay 2007: Playing with Your Brain. Workshop Intern. Conf. on Advances in Computer Entertainment Technology (ACE 2007), pp. 29–32 (2007)Google Scholar
  12. 12.
    Hjelm, S.I., Browall, C.: Brainball – Using brain activity for cool competition. In: Proceedings of NordiCHI (2000)Google Scholar
  13. 13.
  14. 14.
    Krepki, R., Blankertz, B., Curio, G., Müller, K.R.: The Berlin Brain-Computer Interface (BBCI)–towards a new communication channel for online control in gaming applications. Multimedia Tools and Applications 33(1), 73–90 (2007)CrossRefGoogle Scholar
  15. 15.
    van de Laar, B., et al.: Actual and imagined movemnet in BCI gaming: Actually different? Manuscript, Human Media Interaction group, University of Twente, the Netherlands (December 2008)Google Scholar
  16. 16.
    Lalor, E., Kelly, S.P., Finucane, C., Burke, R., Reilly, R.B., McDarby, G.: Brain Computer Interface based on the Steady-State VEP for Immersive Gaming Control. In: Graz BCI Workshop (2004)Google Scholar
  17. 17.
    Leeb, R., Scherer, R., Lee, F., Bischof, H., Pfurtscheller, G.: Navigation in virtual environments through motor imagery. In: 9th Computer Vision Winter Workshop, CVWW, vol. 4, pp. 99–108 (2004)Google Scholar
  18. 18.
    Lehtonen, J., Jylanki, P., Kauhanen, L., Sams, M.: Online Classification of Single EEG Trials During Finger Movements. IEEE Trans. on Biomed. Eng. 55(2 Pt 1), 713–720 (2008)CrossRefGoogle Scholar
  19. 19.
    Lin, T.A., John, L.R.: Quantifying Mental Relaxation with EEG for use in Computer Games. In: International Conference on Internet Computing, pp. 409–415 (2006)Google Scholar
  20. 20.
    Lotze, M., Halsband, U.: Motor imagery. Journal of Physiology 99(4-6), 386–395 (2006)Google Scholar
  21. 21.
    Martinez, P., Bakardjian, H., Cichocki, A.: Fully online multi-command brain-computer interface with visual neurofeedback using SSVEP paradigm. Computational Intelligence and Neuroscience 2007(1), 13 (2007)Google Scholar
  22. 22.
    Middendorf, M., McMillan, G., Calhoun, G., Jones, K.S.: Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Transactions on Rehabilitation Engineering 8(2), 211–214 (2000)CrossRefGoogle Scholar
  23. 23.
    Müller, F., Agamanolis, S., Picard, R.: Exertion Interfaces: Sports over a Distance for Social Bonding and Fun. In: ACM Conference on Human Factors in Computing Systems (CHI 2003), pp. 561–568 (2003)Google Scholar
  24. 24.
    Müller-Putz, G., Scherer, R., Pfurtscheller, G.: Game-like Training to Learn Single Switch Operated Neuroprosthetic Control. In: BRAINPLAY 2007 Brain-Computer Interfaces and Games Workshop at ACE (Advances in Computer Entertainment) (2007)Google Scholar
  25. 25.
    Nijholt, A.: Playing and Cheating in Ambient Entertainment. In: Ma, L., Rauterberg, M., Nakatsu, R. (eds.) ICEC 2007. LNCS, vol. 4740, pp. 415–420. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Nijholt, A., Tan, D., Allison, B., del, J., Millán, R., Graimann, B., Jackson, M.M.: Brain-Computer Interfaces for HCI and Games. In: Proceedings ACM CHI 2008: Art. Science. Balance, Florence, Italy, pp. 3925–3928. ACM Publishing, NY (2008)Google Scholar
  27. 27.
    Nijholt, A., Tan, D., Pfurtscheller, G., Brunner, C., Del, J., Millan, R., Allison, B., Graimann, B., Popescu, F., Blankertz, B., Müller, K.-R.: Brain-Computer Interfacing for Intelligent Systems. IEEE Intelligent Systems, pp. 76-83 (May/June 2008)Google Scholar
  28. 28.
    Nijholt, A., van Erp, J., Heylen, D.K.J.: BrainGain: BCI for HCI and Games. In: Proceedings AISB Symposium Brain Computer Interfaces and Human Computer Interaction: A Convergence of Ideas, Aberdeen, UK, April 2, pp. 32–35 (2008)Google Scholar
  29. 29.
    Oude Bos, D.: BrainBasher: A multi-modal BCI game for research and demonstration. Masters Thesis, HMI, University of Twente, the Netherlands (September 2008)Google Scholar
  30. 30.
    Pineda, J.A., Silverman, D.S., Vankov, A., Hestenes, J.: Learning to control brain rhythms: making a brain-computer interface possible. IEEE Transactions on neural systems and rehabilitation engineering 11(2), 181–184 (2003)CrossRefGoogle Scholar
  31. 31.
    Pope, A.T., Palsson, O.S.: Helping Video Games, Rewire our Minds (manuscript, 2004)Google Scholar
  32. 32.
    Powell, V.: CHI 2008 Exertion Interfaces: A Flexible approach. In: Exertion Workshop at CHI 2008, Florence (2008)Google Scholar
  33. 33.
    Reuderink, B.: Games and Brain-Computer Interfaces: The State of the Art. WP2 BrainGain Deliverable, HMI, University of Twente (September 2008)Google Scholar
  34. 34.
    Scherer, R., Schloegl, A., Lee, F., Bischof, H., Janˇsa, J., Pfurtscheller, G.: The Self-Paced Graz Brain-Computer Interface: Methods and Applications. Computational Intelligence and Neuroscience, Article ID 79826 (2007)Google Scholar
  35. 35.
    Shim, B.-S., Lee, S.-W., Shin, J.-H.: Implementation of a 3-Dimensional Game for developing balanced Brainwave. In: 5th ACIS International Conference on Software Engineering Research, Management & Applications (SERA 2007), pp. 751–758 (August 2007)Google Scholar
  36. 36.
    Strehl, U., Leins, U., Goth, G., Klinger, C., Hinterberger, T., Birbaumer, N.: Self-regulation of Slow Cortical Potentials: A New Treatment for Children With Attention-Deficit/Hyperactivity Disorder, Pediatrics (2006)Google Scholar
  37. 37.
    Vidal, J.J.: Real-time detection of brain events in EEG. Proceedings of the IEEE 65(5), 633–641 (1977)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Anton Nijholt
    • 1
  • Boris Reuderink
    • 1
  • Danny Oude Bos
    • 1
  1. 1.Faculty EEMCSUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations