Advertisement

The Role of KIR in Disease

  • Salim I Khakoo
Chapter

Abstract

Following the cloning of the killer cell immunoglobulin-like (KIR) genes in 1995 (Colonna M, Samaridis J. Science 268(5209):405–408, 1995) their population diversity has become increasingly apparent. This has spawned a plethora of disease association studies. As the KIR genes need to be considered in combination with their MHC class I ligands, this has added complexity to the analysis of these studies. KIR, and KIR:MHC class I gene combinations have been associated with viral infections, autoimmunity, transplantation and pregnancy-associated disorders. Simple rules, with which to interpret these datasets, are often difficult to find and, as our understanding of the interaction between KIR and MHC class I increases, the analysis of these datasets will become even more complex. This review attempts to summarize our current knowledge whilst indicating areas of potential further complexity.

Keywords

Haematopoietic Stem Cell Transplantation Psoriatic Arthropathy Intracytoplasmic Tail Haploidentical Haematopoietic Stem Cell Transplantation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I would like to acknowledge the assistance of Dr Lucia Possami in the construction of the figure and valuable comments on the manuscript.

References

  1. 1.
    Kiessling R, Klein E, Wigzell H (1975) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5(2):112–117PubMedGoogle Scholar
  2. 2.
    Ljunggren HG, Karre K (1990) In search of the ‘missing self ’: MHC molecules and NK cell recognition. Immunol Today 11(7):237–244PubMedGoogle Scholar
  3. 3.
    Kelley J, Walter L, Trowsdale J (2005) Comparative genomics of natural killer cell receptor gene clusters. PLoS Genet 1(2):129–139PubMedGoogle Scholar
  4. 4.
    Sambrook JG, Bashirova A, Andersen H, Piatak M, Vernikos GS, Coggill P et al (2006) Identification of the ancestral killer immunoglobulin-like receptor gene in primates. BMC Genomics 7:209PubMedGoogle Scholar
  5. 5.
    Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K, Corliss B et al (1997) Human diversity in killer cell inhibitory receptor genes. Immunity 7(6):753–763PubMedGoogle Scholar
  6. 6.
    Witt CS, Dewing C, Sayer DC, Uhrberg M, Parham P, Christiansen FT (1999) Population frequencies and putative haplotypes of the killer cell immunoglobulin-like receptor sequences and evidence for recombination. Transplantation 68(11):1784–1789PubMedGoogle Scholar
  7. 7.
    Norman PJ, Stephens HA, Verity DH, Chandanayingyong D, Vaughan RW (2001) Distribution of natural killer cell immunoglobulin-like receptor sequences in three ethnic groups. Immunogenetics 52(3–4):195–205PubMedGoogle Scholar
  8. 8.
    Yawata M, Yawata N, McQueen KL, Cheng NW, Guethlein LA, Rajalingam R et al (2002) Predominance of group A KIR haplotypes in Japanese associated with diverse NK cell repertoires of KIR expression. Immunogenetics 54(8):543–550PubMedGoogle Scholar
  9. 9.
    Toneva M, Lepage V, Lafay G, Dulphy N, Busson M, Lester S et al (2001) Genomic diversity of natural killer cell receptor genes in three populations. Tissue Antigens 57(4):358–362PubMedGoogle Scholar
  10. 10.
    Shilling HG, Guethlein LA, Cheng NW, Gardiner CM, Rodriguez R, Tyan D et al (2002) Allelic polymorphism synergizes with variable gene content to individualize human KIR genotype. J Immunol 168(5):2307–2315PubMedGoogle Scholar
  11. 11.
    Maxwell LD, Wallace A, Middleton D, Curran MD (2002) A common KIR2DS4 deletion variant in the human that predicts a soluble KIR molecule analogous to the KIR1D molecule observed in the rhesus monkey. Tissue Antigens 60(3):254–258PubMedGoogle Scholar
  12. 12.
    Hsu KC, Liu XR, Selvakumar A, Mickelson E, O'Reilly RJ, Dupont B (2002) Killer Ig-like receptor haplotype analysis by gene content: evidence for genomic diversity with a minimum of six basic framework haplotypes, each with multiple subsets. J Immunol 169(9):5118–5129PubMedGoogle Scholar
  13. 13.
    Maxwell LD, Williams F, Gilmore P, Meenagh A, Middleton D (2004) Investigation of killer cell immunoglobulin-like receptor gene diversity: II. KIR2DS4. Hum Immunol 65(6):613–621PubMedGoogle Scholar
  14. 14.
    Martin MP, Single RM, Wilson MJ, Trowsdale J, Carrington M (2008) KIR haplotypes defined by segregation analysis in 59 Centre D'Etude Polymorphisme Humain (CEPH) families. Immunogenetics 60(12):767–774PubMedGoogle Scholar
  15. 15.
    Colonna M, Borsellino G, Falco M, Ferrara GB, Strominger JL (1993) HLA-C is the inhibitory ligand that determines dominant resistance to lysis by NK1- and NK2-specific natural killer cells. Proc Natl Acad Sci USA 90(24):12000–12004PubMedGoogle Scholar
  16. 16.
    Wagtmann N, Rajagopalan S, Winter CC, Peruzzi M, Long EO (1995) Killer cell inhibitory receptors specific for HLA-C and HLA-B identified by direct binding and by functional transfer. Immunity 3(6):801–809PubMedGoogle Scholar
  17. 17.
    Cella M, Longo A, Ferrara GB, Strominger JL, Colonna M (1994) NK3-specific natural killer cells are selectively inhibited by Bw4-positive HLA alleles with isoleucine 80. J Exp Med 180(4):1235–1242PubMedGoogle Scholar
  18. 18.
    Gumperz JE, Litwin V, Phillips JH, Lanier LL, Parham P (1995) The Bw4 public epitope of HLA-B molecules confers reactivity with natural killer cell clones that express NKB1, a putative HLA receptor. J Exp Med 181(3):1133–1144PubMedGoogle Scholar
  19. 19.
    Malnati MS, Peruzzi M, Parker KC, Biddison WE, Ciccone E, Moretta A et al (1995) Peptide specificity in the recognition of MHC class I by natural killer cell clones. Science 267(5200):1016–1018PubMedGoogle Scholar
  20. 20.
    Rajagopalan S, Long EO (1997) The direct binding of a p58 killer cell inhibitory receptor to human histocompatibility leukocyte antigen (HLA)-Cw4 exhibits peptide selectivity. J Exp Med 185(8):1523–1528PubMedGoogle Scholar
  21. 21.
    Maenaka K, Juji T, Nakayama T, Wyer JR, Gao GF, Maenaka T et al (1999) Killer cell immunoglobulin receptors and T cell receptors bind peptide-major histocompatibility complex class I with distinct thermodynamic and kinetic properties. J Biol Chem 274(40):28329–28334PubMedGoogle Scholar
  22. 22.
    Katz G, Gazit R, Arnon TI, Gonen-Gross T, Tarcic G, Markel G et al (2004) MHC class I-independent recognition of NK-activating receptor KIR2DS4. J Immunol 173(3):1819–1825PubMedGoogle Scholar
  23. 23.
    Katz G, Markel G, Mizrahi S, Arnon TI, Mandelboim O (2001) Recognition of HLA-Cw4 but not HLA-Cw6 by the NK cell receptor killer cell Ig-like receptor two-domain short tail number 4. J Immunol 166(12):7260–7267PubMedGoogle Scholar
  24. 24.
    Moesta AK, Norman PJ, Yawata M, Yawata N, Gleimer M, Parham P (2008) Synergistic polymorphism at two positions distal to the ligand-binding site makes KIR2DL2 a stronger receptor for HLA-C than KIR2DL3. J Immunol 180(6):3969–3979PubMedGoogle Scholar
  25. 25.
    Gardiner CM, Guethlein LA, Shilling HG, Pando M, Carr WH, Rajalingam R et al (2001) Different NK cell surface phenotypes defined by the DX9 antibody are due to KIR3DL1 gene polymorphism. J Immunol 166(5):2992–3001PubMedGoogle Scholar
  26. 26.
    Yawata M, Yawata N, Draghi M, Little AM, Partheniou F, Parham P (2006) Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function. J Exp Med 203(3):633–645PubMedGoogle Scholar
  27. 27.
    Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L et al (2005) Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436(7051):709–713PubMedGoogle Scholar
  28. 28.
    Yawata M, Yawata N, Draghi M, Partheniou F, Little AM, Parham P (2008) MHC class I-specific inhibitory receptors and their ligands structure diverse human NK-cell repertoires toward a balance of missing self-response. Blood 112(6):2369–2380PubMedGoogle Scholar
  29. 29.
    Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL (2004) Cross-Talk between activated human NK cells and CD4+ T cells via OX40-OX40 ligand interactions. J Immunol 173(6):3716–3724PubMedGoogle Scholar
  30. 30.
    Ferlazzo G, Pack M, Thomas D, Paludan C, Schmid D, Strowig T, et al (2004) Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc Natl Acad Sci USA 101(47):16606–16611Google Scholar
  31. 31.
    Chiesa MD, Vitale M, Carlomagno S, Ferlazzo G, Moretta L, Moretta A (2003) The natural killer cell-mediated killing of autologous dendritic cells is confined to a cell subset expressing CD94/NKG2A, but lacking inhibitory killer Ig-like receptors. Eur J Immunol 33(6):1657–1666PubMedGoogle Scholar
  32. 32.
    Ferlazzo G, Tsang ML, Moretta L, Melioli G, Steinman RM, Munz C (2002) Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 195(3):343–351PubMedGoogle Scholar
  33. 33.
    Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, Trinchieri G (2002) Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 195(3):327–333PubMedGoogle Scholar
  34. 34.
    Piccioli D, Sbrana S, Melandri E, Valiante NM (2002) Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med 195(3):335–341PubMedGoogle Scholar
  35. 35.
    Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M et al (1999) Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 5(4):405–411PubMedGoogle Scholar
  36. 36.
    Baxter AG, Smyth MJ (2002) The role of NK cells in autoimmune disease. Autoimmunity 35(1):1–14PubMedGoogle Scholar
  37. 37.
    van Bergen J, Thompson A, van der Slik A, Ottenhoff TH, Gussekloo J, Koning F (2004) Phenotypic and functional characterization of CD4 T cells expressing killer Ig-like receptors. J Immunol 173(11):6719–6726PubMedGoogle Scholar
  38. 38.
    Arlettaz L, Degermann S, De Rham C, Roosnek E, Huard B (2004) Expression of inhibitory KIR is confined to CD8+ effector T cells and limits their proliferative capacity. Eur J Immunol 34(12):3413–3422PubMedGoogle Scholar
  39. 39.
    Henseler T (1997) The genetics of psoriasis. J Am Acad Dermatol 37(2 Pt 3):S1–S11Google Scholar
  40. 40.
    Suzuki Y, Hamamoto Y, Ogasawara Y, Ishikawa K, Yoshikawa Y, Sasazuki T et al (2004) Genetic polymorphisms of killer cell immunoglobulin-like receptors are associated with susceptibility to psoriasis vulgaris. J Invest Dermatol 122(5):1133–1136PubMedGoogle Scholar
  41. 41.
    Holm SJ, Sakuraba K, Mallbris L, Wolk K, Stahle M, Sanchez FO (2005) Distinct HLA-C/KIR genotype profile associates with guttate psoriasis. J Invest Dermatol 125(4):721–730PubMedGoogle Scholar
  42. 42.
    Luszczek W, Manczak M, Cislo M, Nockowski P, Wisniewski A, Jasek M et al (2004) Gene for the activating natural killer cell receptor, KIR2DS1, is associated with susceptibility to psoriasis vulgaris. Hum Immunol 65(7):758–766PubMedGoogle Scholar
  43. 43.
    Williams F, Meenagh A, Sleator C, Cook D, Fernandez-Vina M, Bowcock AM et al (2005) Activating killer cell immunoglobulin-like receptor gene KIR2DS1 is associated with psoriatic arthritis. Hum Immunol 66(7):836–841PubMedGoogle Scholar
  44. 44.
    Nelson GW, Martin MP, Gladman D, Wade J, Trowsdale J, Carrington M (2004) Cutting edge: heterozygote advantage in autoimmune disease: hierarchy of protection/susceptibility conferred by hla and killer ig-like receptor combinations in psoriatic arthritis. J Immunol 173(7):4273–4276PubMedGoogle Scholar
  45. 45.
    Snyder MR, Muegge LO, Offord C, O'Fallon WM, Bajzer Z, Weyand CM et al (2002) Formation of the killer Ig-like receptor repertoire on CD4+CD28null T cells. J Immunol 168(8):3839–3846PubMedGoogle Scholar
  46. 46.
    Namekawa T, Snyder MR, Yen JH, Goehring BE, Leibson PJ, Weyand CM et al (2000) Killer cell activating receptors function as costimulatory molecules on CD4+CD28null T cells clonally expanded in rheumatoid arthritis. J Immunol 165(2):1138–1145PubMedGoogle Scholar
  47. 47.
    Snyder MR, Nakajima T, Leibson PJ, Weyand CM, Goronzy JJ (2004) Stimulatory killer Ig-like receptors modulate T cell activation through DAP12-dependent and DAP12-independent mechanisms. J Immunol 173(6):3725–3731PubMedGoogle Scholar
  48. 48.
    Yen JH, Moore BE, Nakajima T, Scholl D, Schaid DJ, Weyand CM et al (2001) Major histocompatibility complex class I-recognizing receptors are disease risk genes in rheumatoid arthritis. J Exp Med 193(10):1159–1167PubMedGoogle Scholar
  49. 49.
    Nakajima T, Goek O, Zhang X, Kopecky SL, Frye RL, Goronzy JJ et al (2003) De novo expression of killer immunoglobulin-like receptors and signaling proteins regulates the cytotoxic function of CD4 T cells in acute coronary syndromes. Circ Res 93(2):106–113PubMedGoogle Scholar
  50. 50.
    Karlsen TH, Boberg KM, Olsson M, Sun JY, Senitzer D, Bergquist A et al (2007) Particular genetic variants of ligands for natural killer cell receptors may contribute to the HLA associated risk of primary sclerosing cholangitis. J Hepatol 46(5):899–906PubMedGoogle Scholar
  51. 51.
    Goverdhan SV, Khakoo SI, Gaston H, Chen X, Lotery A (2008) Age related macular degeneration is associated with the HLA Cw*0701 genotype and the Natural Killer cell receptor AA haplotype. Invest Ophthalmol Vis Sci 49(11):5077–5082Google Scholar
  52. 52.
    Levinson RD, Du Z, Luo L, Monnet D, Tabary T, Brezin AP et al (2008) Combination of KIR and HLA gene variants augments the risk of developing birdshot chorioretinopathy in HLA-A*29-positive individuals. Genes Immun 9(3):249–258PubMedGoogle Scholar
  53. 53.
    Boyton RJ, Smith J, Ward R, Jones M, Ozerovitch L, Wilson R et al (2006) HLA-C and killer cell immunoglobulin-like receptor genes in idiopathic bronchiectasis. Am J Respir Crit Care Med 173(3):327–333PubMedGoogle Scholar
  54. 54.
    Martin MP, Nelson G, Lee JH, Pellett F, Gao X, Wade J et al (2002) Cutting edge: susceptibility to psoriatic arthritis: influence of activating killer Ig-like receptor genes in the absence of specific HLA-C alleles. J Immunol 169(6):2818–2822PubMedGoogle Scholar
  55. 55.
    van der Slik AR, Koeleman BP, Verduijn W, Bruining GJ, Roep BO, Giphart MJ (2003) KIR in type 1 diabetes: disparate distribution of activating and inhibitory natural killer cell receptors in patients versus HLA-matched control subjects. Diabetes 52(10):2639–2642PubMedGoogle Scholar
  56. 56.
    Nikitina-Zake L, Rajalingham R, Rumba I, Sanjeevi CB (2004) Killer cell immunoglobulin-like receptor genes in Latvian patients with type 1 diabetes mellitus and healthy controls. Ann N Y Acad Sci 1037:161–169PubMedGoogle Scholar
  57. 57.
    Momot T, Koch S, Hunzelmann N, Krieg T, Ulbricht K, Schmidt RE et al (2004) Association of killer cell immunoglobulin-like receptors with scleroderma. Arthritis Rheum 50(5):1561–1565PubMedGoogle Scholar
  58. 58.
    Biron CA, Byron KS, Sullivan JL (1989) Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med 320(26):1731–1735PubMedGoogle Scholar
  59. 59.
    French AR, Yokoyama WM (2003) Natural killer cells and viral infections. Curr Opin Immunol 15(1):45–51PubMedGoogle Scholar
  60. 60.
    Orange JS, Ballas ZK (2006) Natural killer cells in human health and disease. Clin Immunol 118(1):1–10PubMedGoogle Scholar
  61. 61.
    Liese J, Schleicher U, Bogdan C (2008) The innate immune response against Leishmania parasites. Immunobiology 213(3–4):377–387PubMedGoogle Scholar
  62. 62.
    Denkers EY, Sher A (1997) Role of natural killer and NK1+ T-cells in regulating cell-mediated immunity during Toxoplasma gondii infection. Biochem Soc Trans 25(2):699–703PubMedGoogle Scholar
  63. 63.
    Meier UC, Owen RE, Taylor E, Worth A, Naoumov N, Willberg C et al (2005) Shared alterations in NK cell frequency, phenotype, and function in chronic human immunodeficiency virus and hepatitis C virus infections. J Virol 79(19):12365–12374PubMedGoogle Scholar
  64. 64.
    Mavilio D, Benjamin J, Daucher M, Lombardo G, Kottilil S, Planta MA et al (2003) Natural killer cells in HIV-1 infection: dichotomous effects of viremia on inhibitory and activating receptors and their functional correlates. Proc Natl Acad Sci USA 100(25):15011–15016PubMedGoogle Scholar
  65. 65.
    Mavilio D, Lombardo G, Benjamin J, Kim D, Follman D, Marcenaro E et al (2005) Characterization of CD56-/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc Natl Acad Sci USA 102(8):2886–2891PubMedGoogle Scholar
  66. 66.
    Alter G, Teigen N, Davis BT, Addo MM, Suscovich TJ, Waring MT et al (2005) Sequential deregulation of NK cell subset distribution and function starting in acute HIV-1 infection. Blood 106(10):3366–3369PubMedGoogle Scholar
  67. 67.
    Fan YY, Yang BY, Wu CY (2008) Phenotypic and functional heterogeneity of natural killer cells from umbilical cord blood mononuclear cells. Immunol Invest 37(1):79–96PubMedGoogle Scholar
  68. 68.
    Gaddy J, Broxmeyer HE (1997) Cord blood CD16+56- cells with low lytic activity are possible precursors of mature natural killer cells. Cell Immunol 180(2):132–142PubMedGoogle Scholar
  69. 69.
    Carrington M, O'Brien SJ (2003) The influence of HLA genotype on AIDS. Annu Rev Med 54:535–551PubMedGoogle Scholar
  70. 70.
    Flores-Villanueva PO, Yunis EJ, Delgado JC, Vittinghoff E, Buchbinder S, Leung JY et al (2001) Control of HIV-1 viremia and protection from AIDS are associated with HLA-Bw4 homozygosity. Proc Natl Acad Sci USA 98(9):5140–5145PubMedGoogle Scholar
  71. 71.
    Martin MP, Gao X, Lee JH, Nelson GW, Detels R, Goedert JJ et al (2002) Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 31(4):429–434PubMedGoogle Scholar
  72. 72.
    Boulet S, Sharafi S, Simic N, Bruneau J, Routy JP, Tsoukas CM et al (2008) Increased proportion of KIR3DS1 homozygotes in HIV-exposed uninfected individuals. Aids 22(5):595–599PubMedGoogle Scholar
  73. 73.
    Alter G, Martin MP, Teigen N, Carr WH, Suscovich TJ, Schneidewind A et al (2007) Differential natural killer cell-mediated inhibition of HIV-1 replication based on distinct KIR/HLA subtypes. J Exp Med 204(12):3027–3036PubMedGoogle Scholar
  74. 74.
    Long BR, Ndhlovu LC, Oksenberg JR, Lanier LL, Hecht FM, Nixon DF et al (2008) Conferral of enhanced natural killer cell function by KIR3DS1 in early human immunodeficiency virus type 1 infection. J Virol 82(10):4785–4792PubMedGoogle Scholar
  75. 75.
    Gumperz JE, Valiante NM, Parham P, Lanier LL, Tyan D (1996) Heterogeneous phenotypes of expression of the NKB1 natural killer cell class I receptor among individuals of different human histocompatibility leukocyte antigens types appear genetically regulated, but not linked to major histocompatibililty complex haplotype. J Exp Med 183(4):1817–1827PubMedGoogle Scholar
  76. 76.
    Li H, Pascal V, Martin MP, Carrington M, Anderson SK (2008) Genetic control of variegated KIR gene expression: polymorphisms of the bi-directional KIR3DL1 promoter are associated with distinct frequencies of gene expression. PLoS Genet 4(11):e1000254Google Scholar
  77. 77.
    Pando MJ, Gardiner CM, Gleimer M, McQueen KL, Parham P (2003) The protein made from a common allele of KIR3DL1 (3DL1*004) is poorly expressed at cell surfaces due to substitution at positions 86 in Ig domain 0 and 182 in Ig domain 1. J Immunol 171(12):6640–6649PubMedGoogle Scholar
  78. 78.
    Martin MP, Qi Y, Gao X, Yamada E, Martin JN, Pereyra F et al (2007) Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat Genet 39(6):733–740PubMedGoogle Scholar
  79. 79.
    Khakoo SI, Thio CL, Martin MP, Brooks CR, Gao X, Astemborski J et al (2004) HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305(5685):872–874PubMedGoogle Scholar
  80. 80.
    Smith HR, Heusel JW, Mehta IK, Kim S, Dorner BG, Naidenko OV et al (2002) Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci USA 99(13):8826–8831PubMedGoogle Scholar
  81. 81.
    Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296(5571):1323–1326PubMedGoogle Scholar
  82. 82.
    Scalzo AA, Fitzgerald NA, Simmons A, La Vista AB, Shellam GR (1990) Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J Exp Med 171(5):1469–1483PubMedGoogle Scholar
  83. 83.
    Romero V, Azocar J, Zuniga J, Clavijo OP, Terreros D, Gu X et al (2008) Interaction of NK inhibitory receptor genes with HLA-C and MHC class II alleles in Hepatitis C virus infection outcome. Mol Immunol 45(9):2429–2436PubMedGoogle Scholar
  84. 84.
    Winter CC, Gumperz JE, Parham P, Long EO, Wagtmann N (1998) Direct binding and functional transfer of NK cell inhibitory receptors reveal novel patterns of HLA-C allotype recognition. J Immunol 161(2):571–577PubMedGoogle Scholar
  85. 85.
    Hanvesakul R, Spencer N, Cook M, Gunson B, Hathaway M, Brown R et al (2008) Donor HLA-C genotype has a profound impact on the clinical outcome following liver transplantation. Am J Transplant 8(9):1931–1941PubMedGoogle Scholar
  86. 86.
    Kunert K, Seiler M, Mashreghi MF, Klippert K, Schonemann C, Neumann K et al (2007) KIR/HLA ligand incompatibility in kidney transplantation. Transplantation 84(11):1527–1533PubMedGoogle Scholar
  87. 87.
    Orange JS (2002) Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect 4(15):1545–1558PubMedGoogle Scholar
  88. 88.
    Lopez-Botet M, Llano M, Ortega M (2001) Human cytomegalovirus and natural killer-mediated surveillance of HLA class I expression: a paradigm of host-pathogen adaptation. Immunol Rev 181:193–202PubMedGoogle Scholar
  89. 89.
    Tomasec P, Wang EC, Davison AJ, Vojtesek B, Armstrong M, Griffin C et al (2005) Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nat Immunol 6(2):181–188PubMedGoogle Scholar
  90. 90.
    Tomasec P, Braud VM, Rickards C, Powell MB, McSharry BP, Gadola S et al (2000) Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287(5455):1031PubMedGoogle Scholar
  91. 91.
    Arnon TI, Achdout H, Levi O, Markel G, Saleh N, Katz G et al (2005) Inhibition of the NKp30 activating receptor by pp 65 of human cytomegalovirus. Nat Immunol 6(5):515–523PubMedGoogle Scholar
  92. 92.
    Cook M, Briggs D, Craddock C, Mahendra P, Milligan D, Fegan C et al (2006) Donor KIR genotype has a major influence on the rate of cytomegalovirus reactivation following T-cell replete stem cell transplantation. Blood 107(3):1230–1232PubMedGoogle Scholar
  93. 93.
    Gazit R, Garty BZ, Monselise Y, Hoffer V, Finkelstein Y, Markel G et al (2004) Expression of KIR2DL1 on the entire NK cell population: a possible novel immunodeficiency syndrome. Blood 103(5):1965–1966PubMedGoogle Scholar
  94. 94.
    Guma M, Angulo A, Vilches C, Gomez-Lozano N, Malats N, Lopez-Botet M (2004) Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 104(12):3664–3671PubMedGoogle Scholar
  95. 95.
    Carr WH, Little AM, Mocarski E, Parham P (2002) NK cell-mediated lysis of autologous HCMV-infected skin fibroblasts is highly variable among NK cell clones and polyclonal NK cell lines. Clin Immunol 105(2):126–140PubMedGoogle Scholar
  96. 96.
    Korbel DS, Finney OC, Riley EM (2004) Natural killer cells and innate immunity to protozoan pathogens. Int J Parasitol 34(13–14):1517–1528PubMedGoogle Scholar
  97. 97.
    Baratin M, Roetynck S, Lepolard C, Falk C, Sawadogo S, Uematsu S et al (2005) Natural killer cell and macrophage cooperation in MyD88-dependent innate responses to Plasmodium falciparum. Proc Natl Acad Sci USA 102(41):14747–14752PubMedGoogle Scholar
  98. 98.
    Artavanis-Tsakonas K, Eleme K, McQueen KL, Cheng NW, Parham P, Davis DM et al (2003) Activation of a subset of human NK cells upon contact with Plasmodium falciparum-infected erythrocytes. J Immunol 171(10):5396–5405PubMedGoogle Scholar
  99. 99.
    Moffett-King A, Entrican G, Ellis S, Hutchinson J, Bainbridge D (2002) Natural killer cells and reproduction. Trends Immunol 23(7):332–333PubMedGoogle Scholar
  100. 100.
    Kopcow HD, Allan DS, Chen X, Rybalov B, Andzelm MM, Ge B et al (2005) Human decidual NK cells form immature activating synapses and are not cytotoxic. Proc Natl Acad Sci USA 102(43):15563–15568PubMedGoogle Scholar
  101. 101.
    Verma S, King A, Loke YW (1997) Expression of killer cell inhibitory receptors on human uterine natural killer cells. Eur J Immunol 27(4):979–983PubMedGoogle Scholar
  102. 102.
    Ponte M, Cantoni C, Biassoni R, Tradori-Cappai A, Bentivoglio G, Vitale C et al (1999) Inhibitory receptors sensing HLA-G1 molecules in pregnancy: decidua-associated natural killer cells express LIR-1 and CD94/NKG2A and acquire p49, an HLA-G1-specific receptor. Proc Natl Acad Sci USA 96(10):5674–5679PubMedGoogle Scholar
  103. 103.
    Koopman LA, Kopcow HD, Rybalov B, Boyson JE, Orange JS, Schatz F et al (2003) Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 198(8):1201–1212PubMedGoogle Scholar
  104. 104.
    King A, Burrows TD, Hiby SE, Bowen JM, Joseph S, Verma S et al (2000) Surface expression of HLA-C antigen by human extravillous trophoblast. Placenta 21(4):376–387PubMedGoogle Scholar
  105. 105.
    King A, Allan DS, Bowen M, Powis SJ, Joseph S, Verma S et al (2000) HLA-E is expressed on trophoblast and interacts with CD94/NKG2 receptors on decidual NK cells. Eur J Immunol 30(6):1623–1631PubMedGoogle Scholar
  106. 106.
    Apps R, Gardner L, Hiby SE, Sharkey AM, Moffett A (2008) Conformation of human leucocyte antigen-C molecules at the surface of human trophoblast cells. Immunology 124(3):322–328PubMedGoogle Scholar
  107. 107.
    Cantoni C, Falco M, Pessino A, Moretta A, Moretta L, Biassoni R (1999) P49, a putative HLA-G1 specific inhibitory NK receptor belonging to the immunoglobulin Superfamily. J Reprod Immunol 43(2):157–165PubMedGoogle Scholar
  108. 108.
    Rajagopalan S, Long EO (1999) A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J Exp Med 189(7):1093–1100PubMedGoogle Scholar
  109. 109.
    Rajagopalan S, Bryceson YT, Kuppusamy SP, Geraghty DE, van der Meer A, Joosten I et al (2006) Activation of NK cells by an endocytosed receptor for soluble HLA-G. PLoS Biol 4(1):e9Google Scholar
  110. 110.
    Sharkey AM, Gardner L, Hiby S, Farrell L, Apps R, Masters L et al (2008) Killer Ig-like receptor expression in uterine NK cells is biased toward recognition of HLA-C and alters with gestational age. J Immunol 181(1):39–46PubMedGoogle Scholar
  111. 111.
    Redman CW, Sargent IL (2005) Latest advances in understanding preeclampsia. Science 308(5728):1592–1594PubMedGoogle Scholar
  112. 112.
    Hiby SE, Walker JJ, O'Shaughnessy KM, Redman CW, Carrington M, Trowsdale J, Hiby SE, Walker JJ, O'Shaughnessy KM, Redman CW, Carrington M, Trowsdale J et al (2004) Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med 200(8):957–965PubMedGoogle Scholar
  113. 113.
    Varla-Leftherioti M (2004) Role of a KIR/HLA-C allorecognition system in pregnancy. J Reprod Immunol 62(1–2):19–27PubMedGoogle Scholar
  114. 114.
    Varla-Leftherioti M, Spyropoulou-Vlachou M, Niokou D, Keramitsoglou T, Darlamitsou A, Tsekoura C et al (2003) Natural killer (NK) cell receptors' repertoire in couples with recurrent spontaneous abortions. Am J Reprod Immunol 49(3):183–191PubMedGoogle Scholar
  115. 115.
    Choi SJ, Park JY, Lee YK, Choi HI, Lee YS, Koh CM et al (2002) Effects of cytokines on VEGF expression and secretion by human first trimester trophoblast cell line. Am J Reprod Immunol 48(2):70–76PubMedGoogle Scholar
  116. 116.
    Gomez-Lozano N, de Pablo R, Puente S, Vilches C (2003) Recognition of HLA-G by the NK cell receptor KIR2DL4 is not essential for human reproduction. Eur J Immunol 33(3):639–644PubMedGoogle Scholar
  117. 117.
    Yan WH, Fan LA, Yang JQ, Xu LD, Ge Y, Yao FJ (2006) HLA-G polymorphism in a Chinese Han population with recurrent spontaneous abortion. Int J Immunogenet 33(1):55–58PubMedGoogle Scholar
  118. 118.
    Aldrich C, Verp MS, Walker MA, Ober C (2000) A null mutation in HLA-G is not associated with preeclampsia or intrauterine growth retardation. J Reprod Immunol 47(1):41–48PubMedGoogle Scholar
  119. 119.
    Ober C, Billstrand C, Kuldanek S, Tan Z. The miscarriage-associated HLA-G -725G allele influences transcription rates in JEG-3 cells. Hum Reprod 21:1743–1748Google Scholar
  120. 120.
    Witt CS, Whiteway JM, Warren HS, Barden A, Rogers M, Martin A et al (2002) Alleles of the KIR2DL4 receptor and their lack of association with pre-eclampsia. Eur J Immunol 32(1):18–29PubMedGoogle Scholar
  121. 121.
    Smyth MJ, Hayakawa Y, Takeda K, Yagita H (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2(11):850–861PubMedGoogle Scholar
  122. 122.
    Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-Keen M et al (1997) Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 18(2):89–95PubMedGoogle Scholar
  123. 123.
    Snijders PJ, Steenbergen RD, Heideman DA, Meijer CJ (2006) HPV-mediated cervical carcinogenesis: concepts and clinical implications. J Pathol 208(2):152–164PubMedGoogle Scholar
  124. 124.
    Carrington M, Wang S, Martin MP, Gao X, Schiffman M, Cheng J et al (2005) Hierarchy of resistance to cervical neoplasia mediated by combinations of killer immunoglobulin-like receptor and human leukocyte antigen loci. J Exp Med 201(7):1069–1075PubMedGoogle Scholar
  125. 125.
    Butsch Kovacic M, Martin M, Gao X, Fuksenko T, Chen CJ, Cheng YJ et al (2005) Variation of the killer cell immunoglobulin-like receptors and HLA-C genes in nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 14(11 Pt 1):2673–2677PubMedGoogle Scholar
  126. 126.
    Ren EC, Chan SH (1996) Human leucocyte antigens and nasopharyngeal carcinoma. Clin Sci 91(3):256–258PubMedGoogle Scholar
  127. 127.
    Barber LD, Percival L, Valiante NM, Chen L, Lee C, Gumperz JE et al (1996) The inter-locus recombinant HLA-B*4601 has high selectivity in peptide binding and functions characteristic of HLA-C. J Exp Med 184(2):735–740PubMedGoogle Scholar
  128. 128.
    Lopez-Vazquez A, Rodrigo L, Martinez-Borra J, Perez R, Rodriguez M, Fdez-Morera JL et al (2005) Protective Effect of the HLA-Bw4I80 Epitope and the Killer Cell Immunoglobulin-Like Receptor 3DS1 Gene against the Development of Hepatocellular Carcinoma in Patients with Hepatitis C Virus Infection. J Infect Dis 192(1):162–165PubMedGoogle Scholar
  129. 129.
    Norris S, Doherty DG, Curry M, McEntee G, Traynor O, Hegarty JE et al (2003) Selective reduction of natural killer cells and T cells expressing inhibitory receptors for MHC class I in the livers of patients with hepatic malignancy. Cancer Immunol Immunother 52(1):53–58PubMedGoogle Scholar
  130. 130.
    Sandel MH, Speetjens FM, Menon AG, Albertsson PA, Basse PH, Hokland M et al (2005) Natural killer cells infiltrating colorectal cancer and MHC class I expression. Mol Immunol 42(4):541–546PubMedGoogle Scholar
  131. 131.
    Stern N, Markel G, Arnon TI, Gruda R, Wong H, Gray-Owen SD et al (2005) Carcinoembryonic antigen (CEA) inhibits NK killing via interaction with CEA-related cell adhesion molecule 1. J Immunol 174(11):6692–6701PubMedGoogle Scholar
  132. 132.
    Ikeda H, Lethe B, Lehmann F, van Baren N, Baurain JF, de Smet C et al (1997) Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 6(2):199–208PubMedGoogle Scholar
  133. 133.
    Bakker AB, Phillips JH, Figdor CG, Lanier LL (1998) Killer cell inhibitory receptors for MHC class I molecules regulate lysis of melanoma cells mediated by NK cells, gamma delta T cells, and antigen-specific CTL. J Immunol 160(11):5239–5245PubMedGoogle Scholar
  134. 134.
    Wu JD, Higgins LM, Steinle A, Cosman D, Haugk K, Plymate SR (2004) Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J Clin Invest 114(4):560–568PubMedGoogle Scholar
  135. 135.
    Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419(6908):734–738PubMedGoogle Scholar
  136. 136.
    Nachmias B, Mizrahi S, Elmalech M, Lazar I, Ashhab Y, Gazit R et al (2007) Manipulation of NK cytotoxicity by the IAP family member Livin. Eur J Immunol 37(12):3467–3476PubMedGoogle Scholar
  137. 137.
    Naumova E, Mihaylova A, Stoitchkov K, Ivanova M, Quin L, Toneva M (2005) Genetic polymorphism of NK receptors and their ligands in melanoma patients: prevalence of inhibitory over activating signals. Cancer Immunol Immunother 54(2):172–178PubMedGoogle Scholar
  138. 138.
    Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295(5562):2097–2100PubMedGoogle Scholar
  139. 139.
    Dupont B, Hsu KC (2004) Inhibitory killer Ig-like receptor genes and human leukocyte antigen class I ligands in haematopoietic stem cell transplantation. Curr Opin Immunol 16(5):634–643PubMedGoogle Scholar
  140. 140.
    Ruggeri L, Aversa F, Martelli MF, Velardi A (2006) Allogeneic hematopoietic transplantation and natural killer cell recognition of missing self. Immunol Rev 214:202–218PubMedGoogle Scholar
  141. 141.
    Loughran TP Jr (1993) Clonal diseases of large granular lymphocytes. Blood 82(1):1–14PubMedGoogle Scholar
  142. 142.
    Mitsui T, Maekawa I, Yamane A, Ishikawa T, Koiso H, Yokohama A et al (2004) Characteristic expansion of CD45RA CD27 CD28 CCR7 lymphocytes with stable natural killer (NK) receptor expression in NK- and T-cell type lymphoproliferative disease of granular lymphocytes. Br J Haematol 126(1):55–62PubMedGoogle Scholar
  143. 143.
    Young NT, Uhrberg M, Phillips JH, Lanier LL, Parham P (2001) Differential expression of leukocyte receptor complex-encoded Ig-like receptors correlates with the transition from effector to memory CTL. J Immunol 166(6):3933–3941PubMedGoogle Scholar
  144. 144.
    Rabbani GR, Phyliky RL, Tefferi A (1999) A long-term study of patients with chronic natural killer cell lymphocytosis. Br J Haematol 106(4):960–966PubMedGoogle Scholar
  145. 145.
    Morice WG, Kurtin PJ, Leibson PJ, Tefferi A, Hanson CA (2003) Demonstration of aberrant T-cell and natural killer-cell antigen expression in all cases of granular lymphocytic leukaemia. Br J Haematol 120(6):1026–1036PubMedGoogle Scholar
  146. 146.
    Nowakowski GS, Morice WG, Phyliky RL, Li CY, Tefferi A (2005) Human leucocyte antigen class I and killer immunoglobulin-like receptor expression patterns in T-cell large granular lymphocyte leukaemia. Br J Haematol 128(4):490–492PubMedGoogle Scholar
  147. 147.
    Casado LF, Granados E, Algara P, Navarro F, Martinez-Frejo MC, Lopez-Botet M (2001) High expression of the ILT2 (LIR-1) inhibitory receptor for major histocompatibility complex class I molecules on clonal expansions of T large granular lymphocytes in asymptomatic patients. Haematologica 86(5):457–463PubMedGoogle Scholar
  148. 148.
    Pascal V, Schleinitz N, Brunet C, Ravet S, Bonnet E, Lafarge X et al (2004) Comparative analysis of NK cell subset distribution in normal and lymphoproliferative disease of granular lymphocyte conditions. Eur J Immunol 34(10):2930–2940PubMedGoogle Scholar
  149. 149.
    Zambello R, Falco M, Della Chiesa M, Trentin L, Carollo D, Castriconi R et al (2003) Expression and function of KIR and natural cytotoxicity receptors in NK-type lymphoproliferative diseases of granular lymphocytes. Blood 102(5):1797–1805PubMedGoogle Scholar
  150. 150.
    Epling-Burnette PK, Painter JS, Chaurasia P, Bai F, Wei S, Djeu JY et al (2004) Dysregulated NK receptor expression in patients with lymphoproliferative disease of granular lymphocytes. Blood 103(9):3431–3439PubMedGoogle Scholar
  151. 151.
    Fischer L, Hummel M, Burmeister T, Schwartz S, Thiel E (2006) Skewed expression of natural-killer (NK)-associated antigens on lymphoproliferations of large granular lymphocytes (LGL). Hematol Oncol 24(2):78–85PubMedGoogle Scholar
  152. 152.
    Gendzekhadze K, Norman PJ, Abi-Rached L, Layrisse Z, Parham P (2006) High KIR diversity in Amerindians is maintained using few gene-content haplotypes. Immunogenetics 58(5–6):474–80PubMedGoogle Scholar
  153. 153.
    Raulet DH (1999) Development and tolerance of natural killer cells. Curr Opin Immunol 11(2):129–134PubMedGoogle Scholar
  154. 154.
    Colonna M, Samaridis J (1995) Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science 268(5209):405–408PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of HepatologyDivision of Medicine, Imperial CollegeLondonUK

Personalised recommendations