Energy Flow in DNA Duplexes

  • Dimitra Markovitsi
  • Thomas Gustavsson
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 93)


This chapter focuses on the singlet excited states of model DNA helices with simple base sequence: poly(dGdC).poly(dGdC), poly(dAdT).poly(dAdT) and poly(dA).poly(dT). We discuss their absorption spectra, which reect the properties of Franck-Condon states, in connection with theoretical studies, performed in the frame of the exciton theory taking into account conformational disorder and spectral broadening. Then we turn to uorescence properties studied using uorescence upconversion and time-correlated single photon counting. We review the behavior of the uorescence decays and we look more closely on the uorescence anisotropy, explaining how this property can provide information on energy transfer in molecular systems and we show the results obtained in this way for the three examined polymeric helices. Finally, we present a qualitative model describing energy ow in DNA helices; this model involves population of excited states that are delocalized over a few bases, ultrafast (<100 fs) intraband scattering and emission from the lower part of the exciton band.


Excited State Probe Pulse Equimolar Mixture Transient Absorption Fluorescence Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pecourt, J.-M. L.; Peon, J.; Kohler, B. J. Am. Chem. Soc. 2000, 122, 9348-9349.CrossRefGoogle Scholar
  2. 2.
    Pecourt, J.-M. L.; Peon, J.; Kohler, B. J. Am. Chem. Soc. 2001, 123, 10370-10378.CrossRefGoogle Scholar
  3. 3.
    Onidas, D.; Markovitsi, D.; Marguet, S.; Sharonov, A.; Gustavsson, T. J. Phys. Chem. B 2002, 106, 11367-11374.CrossRefGoogle Scholar
  4. 4.
    Gustavsson, T.; Sharonov, A.; Markovitsi, D. Chem. Phys. Lett. 2002, 351, 195-200.CrossRefGoogle Scholar
  5. 5.
    Gustavsson, T.; Sharonov, A.; Onidas, D.; Markovitsi, D. Chem. Phys. Lett. 2002, 356, 49-54.CrossRefGoogle Scholar
  6. 6.
    Gustavsson, T.; Banyasz, A.; Lazzarotto, E.; Markovitsi, D.; Scalmani, G.; Frisch, M. J.; Barone, V.; Improta, R. J. Am. Chem. Soc. 2006, 128, 607-619.CrossRefGoogle Scholar
  7. 7.
    Markovitsi, D.; Sharonov, A.; Onidas, D.; Gustavsson, T. ChemPhysChem 2003, 3, 303-305.CrossRefGoogle Scholar
  8. 8.
    Crespo-Hernández, C. E.; Cohen, B.; Kohler, B. Nature 2005, 436, 1141-1144.CrossRefGoogle Scholar
  9. 9.
    Markovitsi, D.; Onidas, D.; Gustavsson, T.; Talbot, F.; Lazzarotto, E. J. Am. Chem. Soc. 2005, 127, 17130-17131.CrossRefGoogle Scholar
  10. 10.
    Markovitsi, D.; Gustavsson, T.; Talbot, F. Photochem. and Photobiol. Sci. 2007, 717-724.Google Scholar
  11. 11.
    Onidas, D.; Gustavsson, T.; Lazzarotto, E.; Markovitsi, D. Phys. Chem. Chem. Phys. 2007, 9, 5143-5148.CrossRefGoogle Scholar
  12. 12.
    Onidas, D.; Gustavsson, T.; Lazzarotto, E.; Markovitsi, D. J. Phys. Chem. B 2007, 111, 9644-9650.CrossRefGoogle Scholar
  13. 13.
    Buchvarov, I.; Wang, Q.; Raytchev, M.; Trifonov, A.; Fiebig, T. Proc. Natl. Acad. Sci. 2007, 104, 4794-4797.CrossRefGoogle Scholar
  14. 14.
    Ravanat, J.-L.; Douki, T.; Cadet, J. J. Photochem. Photobiol., B: Biology 2001, 63, 1011-1344.Google Scholar
  15. 15.
    Douki, T. J. Photochem. Photobiol B: Biology 2006, 82, 45-52.CrossRefGoogle Scholar
  16. 16.
    Malone, M. E.; Cullis, P. M.; Symons, M. C. R.; Parker, A. W. J. Phys. Chem. 1995, 99, 9299-9308.CrossRefGoogle Scholar
  17. 17.
    Schreier, W. J.; Schrader, T. B.; Koller, F. O.; Gilch, P.; Crespo-Hernades, C.; Swaminathan, V. N.; Carell, T.; Zinth, W.; Kohler, B. Science 2007, 315, 625-629.CrossRefGoogle Scholar
  18. 18.
    Markovitsi, D.; Onidas, D.; Talbot, F.; Marguet, S.; Gustavsson, T.; Lazzarotto, E. J. Photochem. Photobiol. A: Chem. 2006, 183, 1-8.CrossRefGoogle Scholar
  19. 19.
    Markovitsi, D.; Talbot, F.; Gustavsson, T.; Onidas, D.; Lazzarotto, E.; Marguet, S. Nature 2006, 441, E7.CrossRefGoogle Scholar
  20. 20.
    Miannay, F. A.; Banyasz, A.; Gustavsson, T.; Markovitsi, D. J. Am. Chem. Soc. 2007, 129, 14574-14575.CrossRefGoogle Scholar
  21. 21.
    Zuo, X.; Cui, G.; Merz Jr., K. M.; Zhang, L.; Lewis, F. D.; Tiede, D. M. Proc. Natl. Acad. Sci. 2006, 103, 3534-3539.CrossRefGoogle Scholar
  22. 22.
    Scholes, G. D.; Ghiggino, K. P. J. Phys. Chem. 1994, 98, 4580-4590.CrossRefGoogle Scholar
  23. 23.
    Starikov, E. B. Modern Phys. Lett. B 2004, 18, 825-831.CrossRefGoogle Scholar
  24. 24.
    Varsano, D.; Di Felice, R.; Marques, M. A. L.; Rubio, A. J. Phys. Chem. B 2006, 110, 7129-7138.CrossRefGoogle Scholar
  25. 25.
    Santoro, F.; Barone, V.; Improta, R. Proc. Natl. Acad. Sci. 2007, 104, 9931-9936.CrossRefGoogle Scholar
  26. 26.
    Bouvier, B.; Gustavsson, T.; Markovitsi, D.; Millié, P. Chem. Phys. 2002, 275, 75-92.CrossRefGoogle Scholar
  27. 27.
    Bouvier, B.; Dognon, J. P.; Lavery, R.; Markovitsi, D.; Millié, P.; Onidas, D.; Zakrzewska, K. J. Phys. Chem. B 2003, 107, 13512-13522.CrossRefGoogle Scholar
  28. 28.
    Emanuele, E.; Markovitsi, D.; Millié, P.; Zakrzewska, K. ChemPhysChem 2005, 6, 1387-1392.CrossRefGoogle Scholar
  29. 29.
    Emanuele, E.; Zakrzewska, K.; Markovitsi, D.; Lavery, R.; Millie, P. J. Phys. Chem. B 2005, 109, 16109-16118.CrossRefGoogle Scholar
  30. 30.
    Vigny, P.; Ballini, J. P. In Excited states in organic chemistry and biochemistry; Pullman, B., Goldblum, N., Eds.; D. Reidel Publishing Company: Doordrecht, Holland, 1977.Google Scholar
  31. 31.
    Gustavsson, T.; Cassara, L.; Gulbinas, V.; Gurzadyan, G.; Mialocq, J.-C.; Pommeret, S.; Sorgius, M.; van der Meulen, P. J. Phys. Chem. A 1998, 102, 4229-4245.CrossRefGoogle Scholar
  32. 32.
    Sobolewski, A. L.; Domcke, W. Phys. Chem. Chem. Phys. 2004, 6, 2763-2771.CrossRefGoogle Scholar
  33. 33.
    Sobolewski, A. L.; Domcke, W.; Hättig, C. Proc. Natl. Acad. Sci. 2005, 102, 17903-17906.CrossRefGoogle Scholar
  34. 34.
    Groenof, G.; Schäfer, L. V.; Boggio-Pasqua, M.; Goette, M.; Grubmüller, H.; Robb, M. A. J. Am. Chem. Soc. 2007, 129, 6812-6819.CrossRefGoogle Scholar
  35. 35.
    Schwalb, N.; Temps, F. J. Am. Chem. Soc. 2007, 129, 9272-9273.CrossRefGoogle Scholar
  36. 36.
    Schwalb, N. K.; Temps, F. Science 2008, 322, 243-245.CrossRefGoogle Scholar
  37. 37.
    Markovitsi, D.; Germain, A.; Millie, P.; Lécuyer, I.; Gallos, L.; Argyrakis, P.; Bengs, H.; Ringsdorf, H. J. Phys. Chem. 1995, 99, 1005-1017.CrossRefGoogle Scholar
  38. 38.
    Bittner, E. R. J. Chem. Phys. 2006, 125, 094909 (1-12).CrossRefGoogle Scholar
  39. 39.
    Bittner, E. R. J. Photochem. Photobiol. A: Chem. 2007, 190, 328-334.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Laboratoire Francis PerrinCEA/DSM/IRAMIS/SPAM–CNRS URA 2453, CEA/SaclayGif-sur-YvetteFrance

Personalised recommendations