Performance Profiling for OpenMP Tasks

  • Karl Fürlinger
  • David Skinner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5568)


Tasking in OpenMP 3.0 allows irregular parallelism to be expressed much more easily and it is expected to be a major step towards the widespread adoption of OpenMP for multicore programming. We discuss the issues encountered in providing monitoring support for tasking in an existing OpenMP profiling tool with respect to instrumentation, measurement, and result presentation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    OpenMP 3.0: Ushering in a new era of parallelism. Birds of a Feather meeting at Supercomputing (2008)Google Scholar
  2. 2.
    Personal communication at supercomputing (2008)Google Scholar
  3. 3.
    Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.J.: A portable programming interface for performance evaluation on modern processors. Int. J. High Perform. Comput. Appl. 14(3), 189–204 (2000)CrossRefGoogle Scholar
  4. 4.
    Geimer, M., Wolf, F., Wylie, B.J.N., Mohr, B.: Scalable parallel trace-based performance analysis. In: Proceedings of the 13th European PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface (EuroPVM/MPI 2006), Bonn, Germany, pp. 303–312 (2006)Google Scholar
  5. 5.
    Itzkowitz, M., Mazurov, O., Copty, N., Lin, Y.: An OpenMP runtime API for profiling. Accepted by the OpenMP ARB as an official ARB White Paper,
  6. 6.
    Levon, J.: OProfile, A system-wide profiler for Linux systems,
  7. 7.
    Mohr, B., Malony, A.D., Shende, S.S., Wolf, F.: Towards a performance tool interface for OpenMP: An approach based on directive rewriting. In: Proceedings of the Third Workshop on OpenMP (EWOMP 2001) (September 2001)Google Scholar
  8. 8.
    Shende, S.S., Malony, A.D.: The TAU parallel performance system. International Journal of High Performance Computing Applications, ACTS Collection Special Issue (2005)Google Scholar
  9. 9.
    Weidendorfer, J., Kowarschik, M., Trinitis, C.: A tool suite for simulation based analysis of memory access behavior. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 440–447. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Wolf, F., Mohr, B.: Automatic performance analysis of hybrid MPI/OpenMP applications. In: Proceedings of the 11th Euromicro Conference on Parallel, Distributed and Network-Based Processing (PDP 2003), February 2003, pp. 13–22. IEEE Computer Society, Los Alamitos (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Karl Fürlinger
    • 1
  • David Skinner
    • 2
  1. 1.Computer Science Division, EECS DepartmentUniversity of California at BerkeleyBerkeleyU.S.A.
  2. 2.Lawrence Berkeley National LaboratoryBerkeleyU.S.A.

Personalised recommendations