Gene Regulatory Models for Plant Development and Evolution

  • E. R. Alvarez-Buylla
  • M. Benítez
  • M. Aldana
  • G. J. Escalera-Santos
  • Á. Chaos
  • P. Padilla-Longoria
  • R. Verduzco-Vázquez
Chapter

Abstract

We argue for the need of mathematical models as integrative tools for understanding processes of cell differentiation and morphogenesis, involving the concerted action of multiple components at different spatiotemporal scales during plant development. We propose dynamical models of gene regulatory networks (GRNs) as the basis for such means. Such models enable the identification of specific steady-state gene expression patterns (attractors), which correspond to different cell types. A comparison between discrete and continuous models is then presented, and we propose that the dynamical structure of a GRN subject to noise conceptually corresponds to Waddington's “epigenetic landscape”. In the third section, we review methods to infer GRN topology from microarray experiments. These include reverse engineering techniques such as Bayesian networks, mutual information, and continuous analysis models. We discuss the application of these approaches to plant cases. However, detailed molecular biology experiments have been very successful in deciphering the structure of underlying small networks. Therefore, we then focus our attention on GRN models of such small modules for various processes of plant development. The first example corresponds to a single-cell GRN for primordial cell specification during early stages of Arabidopsis thaliana flower development. Then, some examples of coupled GRN dynamics in spatiotemporal domains are recalled: cell differentiation in A. thaliana leaf and root epidermis, and the spatiotemporal pattern of genes responsible for the apical shoot meristem behavior. Furthermore, we consider models on auxin transport mechanisms that are sufficient to generate observed morphogenetic shoot and root patterns. We also present several approaches to model signal transduction pathways that consider crosstalk among several biochemical pathways, as well as the influence of environmental factors. In Section 1.5 we consider the constructive role of noise in pattern formation in complex systems. We finally conclude that studies on GRN structure and dynamics aid at understanding evolutionary morphological patterns.

References

  1. Aguda BD, Goryachev AB (2007) From pathways databases to network models of switching behavior. PLoS Comput Biol 3:e152CrossRefGoogle Scholar
  2. Albert R, Othmer HG (2002) The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol 223:1–18CrossRefGoogle Scholar
  3. Aldana M, Balleza E, Kauffman S, Resendis O (2007) Robustness and evolvability in gene regulatory networks. J Theor Biol 245:433–448PubMedCrossRefGoogle Scholar
  4. Alvarez-Buylla RE, Benítez M, Chaos A, Espinosa-Soto C, Padilla-Longoria P, Balleza E (2007) Gene regulatory network models for plant development. Curr Opin Plant Biol 10:83–91PubMedCrossRefGoogle Scholar
  5. Andrec M, Kholodenko BN, Levy RM, Sontag E (2005) Inference of signaling and gene regulatory networks by steady-state perturbation experiments: structure and accuracy. J Theor Biol 232:427–441PubMedGoogle Scholar
  6. Arenas A, Díaz-Guilera A, Pérez-Vicente C (2006) Synchronization reveals topological scales in complex networks. Phys Rev Lett 96:114102PubMedCrossRefGoogle Scholar
  7. Arkin A, Ross J, McAdams HH (1998) Stochastic kinetic analysis of developmental pathway bifurcation in phage-infected Escherichia coli cells. Genetics 149:1633–1648PubMedGoogle Scholar
  8. Benítez M, Espinosa-Soto C, Padilla-Longoria P, Díaz J, Alvarez-Buylla ER (2007) Equivalent genetic regulatory networks in different contexts recover contrasting spatial cell patterns that resemble those in Arabidopsis root and leaf epidermis: a dynamic model. Int J Dev Biol 51:139–155PubMedCrossRefGoogle Scholar
  9. Benzi R, Sutera A, Vulpiani A (1981) The mechanism of stochastic resonance. J Phys A 14:L453–L457CrossRefGoogle Scholar
  10. Blake WJ, Kaern M, Cantor CR, Collins JJ (2003) Noise in eukaryotic gene expression. Nature 422:633–637PubMedCrossRefGoogle Scholar
  11. Bower JM, Bolouri H (2001) Computational modeling of genetic and biochemical networks. MIT Press, Cambridge, MAGoogle Scholar
  12. Buck-Sorlin G, Hemmerling R, Kniemeyer O, Burema B, Kurth W (2008) A rule-based model of barley morphogenesis, with special respect to shading and gibberellic acid signal transduction. Ann Bot 110:1109–1123Google Scholar
  13. Cai L, Friedman N, Xie XS (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440:358–362PubMedCrossRefGoogle Scholar
  14. Chaos A, Aldana M, Espinosa-Soto C, García Ponce de León B, Garay A, Alvarez-Buylla ER (2006) From genes to flower patterns and evolution: dynamic models of gene regulatory networks. J Plant Growth Regul 25:278–289CrossRefGoogle Scholar
  15. Cho KH, Kim JR, Baek S, Choi HS, Choo SM (2006) Inferring biomolecular regulatory networks from phase portraits of time-series expression profiles. FEBS Lett 580:3511–3518PubMedCrossRefGoogle Scholar
  16. Coen E, Meyerowitz E (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37PubMedCrossRefGoogle Scholar
  17. Davidich MI, Bornholdt S (2008) Bolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3:e1672PubMedCrossRefGoogle Scholar
  18. Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh C-H, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Titus Brown C, Livi CB, Lee PY, Revilla R, Rust AG, Pan ZJ, Schilstra MJ, Clarke PJC, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A genomic regulatory network for development. Science 295:1669–1678PubMedCrossRefGoogle Scholar
  19. Díaz J, Alvarez-Buylla ER (2006) A model of the ethylene signaling pathway and its gene response in Arabidopsis thaliana: pathway cross-talk and noise-filtering properties. Chaos 16:023112. doi:10.1063/1.2189974PubMedCrossRefGoogle Scholar
  20. Dupuy L, Mackenzie J, Rudge T, Haseloff J (2008) A system for modelling cell cell interactions during plant morphogenesis. Ann Bot 101:1255–1265PubMedCrossRefGoogle Scholar
  21. Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER (2004) A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell 16:2923–2939PubMedCrossRefGoogle Scholar
  22. Gammaitoni L, Hanggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Mod Phys 70:223–287CrossRefGoogle Scholar
  23. Gang H, Ditzinger T, Ning CZ, Haken H (1993) Stochastic resonance without external periodic force. Phys Rev Lett 71:807–810PubMedCrossRefGoogle Scholar
  24. Grieneisen VA, Xu J, Maree1 AFM, Hogeweg P, Scheres S (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013PubMedCrossRefGoogle Scholar
  25. Hasty J, McMillen D, Isaacs F, Collins JJ (2001) Computational studies of gene regulatory networks: in numero molecular biology. Nature Rev Genet 2:268–279PubMedCrossRefGoogle Scholar
  26. Holloway DM, Harrison LG (2007) Pattern selection in plants: coupling chemical dynamics to surface growth in three dimensions. Ann Bot 101:361–374PubMedCrossRefGoogle Scholar
  27. Huang S, Ingber DE (2000) Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Exp Cell Res 262:91–103CrossRefGoogle Scholar
  28. Huang S, Ingber DE (2007) A non-genetic basis for cancer progression and metastasis: self-organizing attractors in cell regulatory networks. Breast Dis 26:27–54Google Scholar
  29. Huang S, Eichler G, Bar-Yam Y, Ingber DE (2005) Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys Rev Lett 94 128701PubMedCrossRefGoogle Scholar
  30. Imoto S, Sunyong K, Goto T, Aburatani S, Tashiro K, Kuhara S, Miyano S (2002) Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. In: Proc IEEE Computer Society Bioinformatics Conf, Palo Alto, CA, pp 219–227Google Scholar
  31. Irons DJ, Monk NAM (2007) Identifying dynamical modules from genetic regulatory systems: applications to the segment polarity network. BMC Bioinform 8:413. doi:10.1186/1471-2105-8-413CrossRefGoogle Scholar
  32. Jönsson H, Heisler M, Reddy GV, Agrawal V, Gor V, Shapiro BE, Mjolsness E, Meyerowitz EM (2005) Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem. Bioinformatics 21 (Suppl 1):i232–i240PubMedCrossRefGoogle Scholar
  33. Jönsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci USA 103:1633–1638PubMedCrossRefGoogle Scholar
  34. Kaneko K (1998) On the strength of attractors in a high-dimensional system: Milnor attractor network, robust global attraction, and noise-induced selection. Physics D 124:322–344CrossRefGoogle Scholar
  35. Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network motifs. Proc Natl Acad Sci USA 102:13773–13778PubMedCrossRefGoogle Scholar
  36. Kauffman S (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437–467PubMedCrossRefGoogle Scholar
  37. Kholodenko BN, Kiyatkin A, Bruggeman FJ, Sontag E, Westerhoff HV, Hoek JB (2002) Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc Natl Acad Sci USA 99:12841–12846PubMedCrossRefGoogle Scholar
  38. Kim SY, Imoto S, Miyano S (2003) Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform 4:228–235PubMedCrossRefGoogle Scholar
  39. Kraut S, Feudel U, Grebogi C (1999) Preference of attractors in noisy multistable systems. Phys Rev E 59:5253–5260CrossRefGoogle Scholar
  40. Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature 424:147–151PubMedCrossRefGoogle Scholar
  41. Li W, Graur D (1991) Fundamentals of molecular evolution. Sinauer Press, Sunderland, MAGoogle Scholar
  42. Li S, Assmann SM, Albert R (2006) Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol 4:e312PubMedCrossRefGoogle Scholar
  43. Margulis L, Sagan D (1986) Microcosmos. Summit Books, New YorkGoogle Scholar
  44. Mendoza L, Alvarez-Buylla ER (1998) Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. J Theor Biol 193:307–319PubMedCrossRefGoogle Scholar
  45. Mendoza L, Alvarez-Buylla ER (2000) Genetic regulation of root hair development in Arabidopsis thaliana: a network model. J Theor Biol 204:311–326PubMedCrossRefGoogle Scholar
  46. Mendoza L, Thieffry D, Alvarez-Buylla ER (1999) Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics 15:593–606PubMedCrossRefGoogle Scholar
  47. Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U (2004) Superfamilies of evolved and designed networks. Science 5663:1538–1542CrossRefGoogle Scholar
  48. Mjolsness E, Sharp DH, Reinitz J (1991) A connectionist model of development. J Theor Biol 152:429–454PubMedCrossRefGoogle Scholar
  49. Nicolis C (1981) Solar variability and stochastic effects on climate. Sol Phys 74:473–478CrossRefGoogle Scholar
  50. Nicolis C (1982) Stochastic aspect of climatic transitions-response to a periodic forcing. Tellus 34:1–9CrossRefGoogle Scholar
  51. Paulsson J (2004) Summing up the noise in gene networks. Nature 427:415–418PubMedCrossRefGoogle Scholar
  52. Paulsson J, Berg OG, Ehrenberg M (2000) Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. Proc Natl Acad Sci USA 97:7148–7153PubMedCrossRefGoogle Scholar
  53. Pesch M, Hülskamp M (2004) Creating a two-dimensional pattern de novo during Arabidopsis trichome and root hair initiation. Curr Opin Genet Dev 14:422–427PubMedCrossRefGoogle Scholar
  54. Pikovsky AS, Kurths J (1997) Coherence resonance in a noise-driven excitable system. Phys Rev Lett 78:775–778CrossRefGoogle Scholar
  55. Quayle AP, Bullock S (2006) Modelling the evolution of genetic regulatory networks. J Theor Biol 238:737–753PubMedCrossRefGoogle Scholar
  56. Rao CV, Wolf DM, Arkin AP (2002) Control, exploitation and tolerance of intracellular noise. Nature 420:231–237PubMedCrossRefGoogle Scholar
  57. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555PubMedCrossRefGoogle Scholar
  58. Rudall P (1987) Anatomy of flowering plants. An introduction to structure and development. Edward Arnold, LondonGoogle Scholar
  59. Russell DF, Wilkens LA, Moss F (1999) Use of behavioural stochastic resonance by paddle fish for feeding. Nature 402:291–294PubMedCrossRefGoogle Scholar
  60. Rustici G, Mata J, Kivinen K, Lió P, Penkett CJ, Burns G, Hayles J, Brazima A, Nurse P, Bähler J (2004) Periodic gene expression program of the fission yeast cell cycle. Nature Genet 36:809–817PubMedCrossRefGoogle Scholar
  61. Savage NS, Schmidt W (2008) From priming to plasticity: the changing fate of rhizodermic cells. BioEssays 30:75–81PubMedCrossRefGoogle Scholar
  62. Scheres B (2001) Plant cell identity. The role of position and lineage. Plant Physiol 125:112–114PubMedCrossRefGoogle Scholar
  63. Siegal ML Promislow DEL, Bergman A (2007) Functional and evolutionary inference in gene networks: does topology matter? Genetica 129:83–103PubMedCrossRefGoogle Scholar
  64. Smolen P, Baxter DA, Byrne JH (2000) Modeling transcriptional control in gene networks – methods, recent results, and future directions. Bull Math Biol 62:247–292PubMedCrossRefGoogle Scholar
  65. Solé R, Valverde S (2006) Are network motifs the spandrels of cellular complexity? Trends Ecol Evol 21:419–422PubMedCrossRefGoogle Scholar
  66. Sontag E, Kiyatkin A, Kholodenko BN (2004) Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data. Bioinformatics 20:1877–1886PubMedCrossRefGoogle Scholar
  67. Steuer R, Kurths J, Daub CO, Weise J, Selbig J (2002) The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18:S231–S240PubMedGoogle Scholar
  68. Vieten A, Sauer M, Brewer PB, Friml J (2007) Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci 12:160–168PubMedCrossRefGoogle Scholar
  69. Vilar JMG, Guet CC, Leibler S (2003) Modeling network dynamics: the lac operon, a case study. J Cell Biol 161:471–476PubMedCrossRefGoogle Scholar
  70. Waddington CH (1957) The strategy of the genes. Geo Allen & Unwin, LondonGoogle Scholar
  71. Wang Z, Zhang J (2007) In search of the biological significance of modular structures in protein networks. PLoS Comput Biol 3:e107. doi:10.1371/journal.pcbi.0030107PubMedCrossRefGoogle Scholar
  72. Wang Z, Hou Z, Xin H, Zhang Z (2007) Engineered internal noise stochastic resonator in gene network: a model study. Biophys Chem 125:281–285PubMedCrossRefGoogle Scholar
  73. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO, Botstein D (1992) Identification of the genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13:1977–2000CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • E. R. Alvarez-Buylla
    • 1
    • 2
  • M. Benítez
    • 1
    • 2
  • M. Aldana
    • 1
    • 3
  • G. J. Escalera-Santos
    • 1
    • 2
  • Á. Chaos
    • 1
    • 2
  • P. Padilla-Longoria
    • 1
    • 4
  • R. Verduzco-Vázquez
    • 1
    • 5
  1. 1.C3, Centro de Ciencias de la ComplejidadCd. Universitaria, UNAMMéxicoMéxico
  2. 2.Departamento de Ecología FuncionalInstituto de Ecología, Universidad Nacional Autónoma de MéxicoDistrito Federal, CoyoacánMexico
  3. 3.Instituto de Ciencias FísicasUniversidad Nacional Autónoma de México, Campus CuernavacaMorelosMexico
  4. 4.Instituto de Investigaciones en Matemáticas Aplicadas y en SistemasUniversidad Nacional Autónoma de MéxicoDistrito FederalMexico
  5. 5.Universidad Autónoma del Estado de MorelosCuernavacaMexico

Personalised recommendations