Advertisement

General Fuzzy Answer Set Programs

  • Jeroen Janssen
  • Steven Schockaert
  • Dirk Vermeir
  • Martine De Cock
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5571)

Abstract

A number of generalizations of answer set programming have been proposed in the literature to deal with vagueness, uncertainty, and partial rule satisfaction. We introduce a unifying framework that entails most of the existing approaches to fuzzy answer set programming. In this framework, rule bodies are defined using arbitrary fuzzy connectives with monotone partial mappings. As an approximation of full answer sets, k–answer sets are introduced to deal with conflicting information, yielding a flexible framework that encompasses, among others, existing work on valued constraint satisfaction and answer set optimization.

Keywords

Answer Set Programs Fuzzy Logic Valued Constraint Satisfaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the Fifth International Conference and Symposium on Logic Programming (ICLP/SLP 1988), pp. 1081–1086. ALP, IEEE, The MIT Press (1988)Google Scholar
  3. 3.
    Van Nieuwenborgh, D., De Cock, M., Vermeir, D.: An introduction to fuzzy answer set programming. Annals of Mathematics and Artificial Intelligence 50(3-4), 363–388 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Lukasiewicz, T., Straccia, U.: Tightly integrated fuzzy description logic programs under the answer set semantics for the semantic web. In: Marchiori, M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007. LNCS, vol. 4524, pp. 289–298. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Straccia, U.: Annotated answer set programming. In: Proceedings of the 11th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2006) (2006)Google Scholar
  6. 6.
    Damásio, C.V., Pereira, L.M.: Antitonic logic programs. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS, vol. 2173, pp. 379–392. Springer, Heidelberg (2001)Google Scholar
  7. 7.
    Damásio, C.V., Medina, J., Ojeda-Aciego, M.: Sorted multi-adjoint logic programs: termination results and applications. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 260–273. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard and easy problems. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI 1995), pp. 631–637 (1995)Google Scholar
  9. 9.
    Dubois, D., Fortemps, P.: Computing improved optimal solutions to max–min flexible constraint satisfaction problems. European Journal of Operational Research 118, 95–126 (1999)CrossRefzbMATHGoogle Scholar
  10. 10.
    Tarski, A.: A lattice theoretical fixpoint theorem and its application. Pacific Journal of Mathematics 5, 285–309 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Damasio, C.V., Pereira, L.M.: An encompassing framework for paraconsistent logic programs. Journal of Applied Logic 3, 67–95 (2003)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Damásio, C.V., Pereira, L.M.: Hybrid probabilistic logic programs as residuated logic programs. In: Brewka, G., Moniz Pereira, L., Ojeda-Aciego, M., de Guzmán, I.P. (eds.) JELIA 2000. LNCS, vol. 1919, pp. 57–72. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Brewka, G., Niemelä, I., Truszczyński, M.: Answer set optimization. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 867–872. Morgan Kaufmann Publishers, San Francisco (2003)Google Scholar
  14. 14.
    Janssen, J., Heymans, S., Vermeir, D., De Cock, M.: Compiling fuzzy answer set programs to fuzzy propositional theories. In: Proceedings of the 24th International Conference on Logic Programming (ICLP 2008). Springer, Heidelberg (2008) (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jeroen Janssen
    • 1
  • Steven Schockaert
    • 2
  • Dirk Vermeir
    • 1
  • Martine De Cock
    • 2
  1. 1.Dept. of Computer ScienceVrije Universiteit BrusselBelgium
  2. 2.Dept. of Applied Mathematics and Computer ScienceUniversiteit GentBelgium

Personalised recommendations