Advertisement

Using Workflow Medleys to Streamline Exploratory Tasks

  • Emanuele Santos
  • David Koop
  • Huy T. Vo
  • Erik W. Anderson
  • Juliana Freire
  • Cláudio Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5566)

Abstract

To analyze and understand the growing wealth of scientific data, complex workflows need to be assembled, often requiring the combination of loosely-coupled resources, specialized libraries, distributed computing infrastructure, and Web services. However, constructing these workflows is a non-trivial task, especially for users who do not have programming expertise. This problem is compounded for exploratory tasks, where the workflows need to be iteratively refined. In this paper, we introduce workflow medleys, a new approach for manipulating collections of workflows. We propose a workflow manipulation language that includes operations that are common in exploratory tasks and present a visual interface designed for this language. We briefly discuss how medleys have been applied in two (real) applications.

Keywords

Output Port Business Process Management Business Process Execution Language Visual Interface Exploratory Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yahoo! Pipes, http://pipes.yahoo.com
  2. 2.
    The Taverna Project, http://taverna.sourceforge.net
  3. 3.
    The VisTrails Project, http://www.vistrails.org
  4. 4.
    Aalst, W., Hee, K.: Workflow Management: Models, Methods, and Systems. MIT Press, Cambridge (2002)Google Scholar
  5. 5.
    Business process execution language for web services version 1.1 (February 2008), http://www.ibm.com/developerworks/library/specification/ws-bpel
  6. 6.
    Freire, J., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E., Vo, H.T.: Managing rapidly-evolving scientific workflows. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 10–18. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  8. 8.
    The matplotlib library, http://matplotlib.sourceforge.net
  9. 9.
    The Kepler Project, http://kepler-project.org
  10. 10.
    Lee, E.A., Parks, T.M.: Dataflow Process Networks. Proceedings of the IEEE 83(5), 773–801 (1995)CrossRefGoogle Scholar
  11. 11.
    The Chembiogrid web site, http://www.chembiogrid.org
  12. 12.
    Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit An Object-Oriented Approach To 3D Graphics. Kitware (2003)Google Scholar
  13. 13.
    Parker, S.G., Johnson, C.R.: SCIRun: a scientific programming environment for computational steering. In: Supercomputing (1995)Google Scholar
  14. 14.
    Deelman, E., Singh, G., Su, M.H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Berriman, G.B., Good, J., Laity, A., Jacob, J.C., Katz, D.S.: Pegasus: a Framework for Mapping Complex Scientific Workflows onto Distributed Systems. Scientific Programming Journal 13(3), 219–237 (2005)CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Foster, I., Voeckler, J., Wilde, M., Zhao, Y.: Chimera: A virtual data system for representing, querying and automating data derivation. In: Statistical and Scientific Database Management (SSDBM), pp. 37–46 (2002)Google Scholar
  17. 17.
    Lawrence, P. (ed.): Workflow Handbook. Workflow Management Coalition. John Wiley and Sons, Chichester (1997)Google Scholar
  18. 18.
    van der Aalst, W.: Business process management: A personal view. Business Process Management Journal 10(2), 135–139 (2004)Google Scholar
  19. 19.
    Mohan, C., Alonso, G., Günthör, R., Kamath, M.: Exotica: A research perspective of workflow management systems. IEEE Data Engineering Bulletin 18(1), 19–26 (1995)Google Scholar
  20. 20.
    Deelman, E., Gil, Y.: NSF Workshop on Challenges of Scientific Workflows. Technical report, NSF (2006), http://vtcpc.isi.edu/wiki/index.php/Main_Page
  21. 21.
  22. 22.
  23. 23.
    Viegas, F.B., Wattenberg, M., van Ham, F., Kriss, J., McKeon, M.: Many eyes: A site for visualization at internet scale. IEEE Transactions on Visualization and Computer Graphics 13(6), 1121–1128 (2007)CrossRefGoogle Scholar
  24. 24.
  25. 25.
  26. 26.
  27. 27.
    Biton, O., Cohen-Boulakia, S., Davidson, S.B.: Zoom*userviews: querying relevant provenance in workflow systems. In: VLDB 2007: Proceedings of the 33rd international conference on Very large data bases, VLDB Endowment, pp. 1366–1369 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Emanuele Santos
    • 1
    • 2
  • David Koop
    • 1
    • 2
  • Huy T. Vo
    • 1
    • 2
  • Erik W. Anderson
    • 1
    • 2
  • Juliana Freire
    • 2
  • Cláudio Silva
    • 1
    • 2
  1. 1.Scientific Computing and Imaging InstituteUniversity of UtahSalt Lake CityUSA
  2. 2.School of ComputingUniversity of UtahSalt Lake CityUSA

Personalised recommendations