Breast Cancer Classification Applying Artificial Metaplasticity

  • Alexis Marcano-Cedeño
  • Fulgencio S. Buendía-Buendía
  • Diego Andina
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5602)

Abstract

In this paper we are apply Artificial Metaplasticity MLP (MMLPs) to Breast Cancer Classification. Artificial Metaplasticity is a novel ANN training algorithm that gives more relevance to less frequent training patterns and subtract relevance to the frequent ones during training phase, achieving a much more efficient training, while at least maintaining the Multilayer Perceptron performance. Wisconsin Breast Cancer Database (WBCD) was used to train and test MMLPs. WBCD is a well-used database in machine learning, neural networks and signal processing. Experimental results show that MMLPs reach better accuracy than any other recent results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rodrigues, P.S., Giraldi, G.A., Chang, R.-F., Suri, J.S.: Non-extensive entropy for cad systems of breast cancer images. In: Computer Graphics and Image Processing, SIBGRAPI 2006, pp. 121–128 (2006)Google Scholar
  2. 2.
    Ardekan, R.D., Torabi, M., Fatemizadeh, E.: Breast cancer diagnosis and classification in mr-images using multi-stage classifie. In: Biomedical and Pharmaceutical Engineering, ICBPE 2006, pp. 84–87 (2006)Google Scholar
  3. 3.
    Subashini, T.S., Ramalingam, V., Palanivel, S.: Breast mass classification based on cytological patterns using rbfnn and svm. Expert Systems with Applications 36, 5284–5290 (2009)CrossRefGoogle Scholar
  4. 4.
    Chao, L., Xue-Wei, L., Hong-Bo, P.: Aplifcation of extension neural network for classification with incomplete survey data. In: Cognitive Informatics, ICCI 2006, pp. 1–3 (2006)Google Scholar
  5. 5.
    Misra, B.B., Biswal, B.N., Dash, P.K., Panda, G.: Simplified polinomial neural network for classification task in data mining. In: Evolutionary Computation, CEC 2007, pp. 721–728 (2007)Google Scholar
  6. 6.
    Übeyli, E.: modified mixture of experts for diabetes diagnosis. J. Med. Syst., Springer On-line edn. 1–7, July 30 (2008) doi:10.1007/s10916-008-9191-3Google Scholar
  7. 7.
    Orozco-Monteagudo, M., Taboada-Crispí, A., Del Toro-Almenares, A.: Training of multilayer perceptron neural networks by using cellular genetic algorithms. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 389–398. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Karabatak, M., Cevdet-Ince, M.: An expert system for detection of breast cancer based on association rules and neural network. Expert Systems with Applications 36, 3465–3469 (2009)CrossRefGoogle Scholar
  9. 9.
    Übeyli, E.D.: Implementing automated diagnostic systems for breast cancer detection. Expert Systems with Applications 33(4), 1054–1062 (2007)CrossRefGoogle Scholar
  10. 10.
    Guijarro-Berdiñas, B., Fontenla-Romero, O., Perez-Sanchez, B., Fraguela, P.: A linear learning method for multilayer perceptrons using least-squares. LNCS, vol. 4225, pp. 365–374. Springer, Heidelberg (2007)Google Scholar
  11. 11.
  12. 12.
    Abraham, W.C., Tate, W.P.: Metaplasticity: a new vista across the field of synaptic plasticity. Progress in Neurobiology 52, 303–323 (1997)CrossRefGoogle Scholar
  13. 13.
    Abraham, W.C., Bear, M.F.: Metaplasticity: the plasticity of synaptic plasticity. Trends in Neuroscience 19(4), 126–130 (1996)CrossRefGoogle Scholar
  14. 14.
    Peréz-Otaño, I., Ehlers, M.D.: Homeostatic plasticity and nmda receptor trafficking. Trends in Neuroscience 28, 229–238 (2005)CrossRefGoogle Scholar
  15. 15.
    Hagan, M.T., Demuth, H.B., Beale, M.: Neural network design. PWS Pub. Co., Boston (1996)Google Scholar
  16. 16.
    Leung, H., Haykin, S.: The complex backpropagation algorithm. IEEE Transactions on Signal Processing 39, 2101–2104 (1991)CrossRefGoogle Scholar
  17. 17.
    Man, K.F., Tang, K.S., Kwong, S.: Genetic algorithms: Concepts and designs. Springer, London (1999)CrossRefMATHGoogle Scholar
  18. 18.
    Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of neural science. McGraw-Hill, New York (2000)Google Scholar
  19. 19.
    Jedlicka, P.: Synaptic plasticity, metaplasticidad and bcm theory. Institute of Pathophysiology, Medical Faculty. Comenius University Bratislava, Slovakia, vol. 103(4-5), pp. 137–143 (2002)Google Scholar
  20. 20.
    Kinto, E., Del-Moral-Hernandez, E., Marcano, A., Ropero-Pelaez, J.: A preliminary neural model for movement direction recognition based on biologically plausible plasticity rules. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4528, pp. 628–636. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Ropero-Pelaez, J., Piqueira, J.R.: Biological clues for up-to-date artificial neurons. In: Andina, D., Pham, D.T. (eds.) Computational Intelligence for Engineering and Manufacturing. Springer, The Nederlands (2007)Google Scholar
  22. 22.
    Andina, D., Jevtić, A., Marcano, A., Barrón-Adame, M.: Error weighting in artificial neural networks learning interpreted as a metaplasticity model. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4527, pp. 244–252. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Andina, D., Antonio, A.-V., Jevtić, A., Fombellida, J.: Artificial metaplasticity can improve artificial neural network learning. In: Andina, D. (Guest ed.) Intelligent Automation and Soft Computing, Special Issue in Signal Processing and Soft Computing, vol. 15(4), pp. 681–694. TSI Press, EEUU (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alexis Marcano-Cedeño
    • 1
  • Fulgencio S. Buendía-Buendía
    • 1
  • Diego Andina
    • 1
  1. 1.Universidad Politécnica de MadridSpain

Personalised recommendations