Genetic Approaches for the Automatic Division of Topological Active Volumes

  • J. Novo
  • N. Barreira
  • M. G. Penedo
  • J. Santos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5602)

Abstract

The Topological Active Volumes is an active model focused on 3D segmentation tasks. It is based on the 2D Topological Active Nets model and provides information about the surfaces and the inside of the detected objects in the scene. This paper proposes new optimization approaches based on Genetic Algorithms combined with a greedy local search that improve the results of the 3D segmentations and overcome some drawbacks of the model related to parameter tuning or noise conditions. The hybridization of the genetic algorithm with the local search allows the treatment of topological changes in the model, with the possibility of an automatic subdivision of the Topological Active Volume. This combination integrates the advantages of the global and local search procedures in the segmentation process.

Keywords

Topological Active Volumes Genetic Algorithms 3D segmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsumiyama, K.S.Y., Yamamoto, K.: Active net: Active net model for region extraction. IPSJ SIG. notes 89(96), 1–8 (1989)Google Scholar
  2. 2.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(2), 321–323 (1988)CrossRefMATHGoogle Scholar
  3. 3.
    Barreira, N., Penedo, M.G.: Topological Active Volumes. EURASIP Journal on Applied Signal Processing 13(1), 1937–1947 (2005)Google Scholar
  4. 4.
    Ballerini, L.: Medical image segmentation using genetic snakes. In: Proceedings of SPIE: Application and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation II, vol. 3812, pp. 13–23 (1999)Google Scholar
  5. 5.
    Séguier, R., Cladel, N.: Genetic snakes: Application on lipreading. In: International Conference on Artificial Neural Networks and Genetic Algorithms (2003)Google Scholar
  6. 6.
    Ibáñez, O., Barreira, N., Santos, J., Penedo, M.G.: Genetic approaches for topological active nets optimization. Pattern Recognition 42, 907–917 (2009)Google Scholar
  7. 7.
    Jones, T.N., Metaxas, D.N.: Automated 3D segmentation using deformable models and fuzzy affinity. In: Duncan, J.S., Gindi, G. (eds.) IPMI 1997. LNCS, vol. 1230, pp. 113–126. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    Qiu, B., Clarysse, P., Montagnat, J., Janier, M., Vray, D.: Comparison of 3D deformable models for in vivo measurements of mouse embryo from 3D ultrasound images. In: Ultrasonics Symposium, 2004, vol. 1, pp. 748–751. IEEE, Los Alamitos (2004)CrossRefGoogle Scholar
  9. 9.
    McInerney, T., Terzopoulos, D.: Topology adaptive deformable surfaces for medical image volume segmentation. IEEE Transactions on Medical Imaging 18(10), 840–850 (1999)CrossRefGoogle Scholar
  10. 10.
    Bro-Nielsen, M.: Active nets and cubes. Technical Report 13, IMM, Technical University of Denmark (1994)Google Scholar
  11. 11.
    Bro-Nielsen, M.: Modelling elasticity in solids using active cubes - application to simulated operations. In: Ayache, N. (ed.) CVRMed 1995. LNCS, vol. 905, pp. 533–541. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  12. 12.
    Novo, J., Barreira, N., Santos, J., Penedo, M.G.: Topological active volumes optimization with genetic approaches. In: XII Conference of the Spanish Association for the Artificial Intelligence, vol. 2, pp. 41–50 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • J. Novo
    • 1
  • N. Barreira
    • 1
  • M. G. Penedo
    • 1
  • J. Santos
    • 1
  1. 1.Computer Science DepartmentUniversity of A CoruñaSpain

Personalised recommendations