Access Control to Security Areas Based on Facial Classification

  • Aitor Moreno Fdz. de Leceta
  • Mariano Rincón
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5602)


The methods of biometric access control are currently booming due to increased security checks at business and organizational areas. Belong to this area applications based on fingerprints and iris of the eye, among others. However, although there are many papers related to facial recognition, in fact it is difficult to apply to real-world applications because of variations in lighting, position and changing expressions and appearance. In addition, systems proposed in the laboratory do not usually contain a large volume of samples, or the test variations not may be used in applications in real environments. Works include the issue of recognition of the individual, but not the access control based only on facial detect, although there are applications that combine cards with facial recognition, working more on the verification that identification. This paper proposes a robust system of classification based on a multilayer neural network, whose input will be samples of facial photographs with different variations of lighting, position and even time, with a volume of samples that simulates a real environment. Output is not the recognition of the individual, but the class to which it belongs. Through the experiments, it is demonstrated that this relatively simple structure is enough to select the main characteristics of the individuals, and, in the same process, enable the network to correctly classify individuals before entering the restricted area.


Neural Network Access Control Facial Recognition Intermediate Layer Real Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ballard, D.H., Brown, C.M.: Computer Vision. Prentice Hall, Englewood Cliffs (1982)Google Scholar
  2. 2.
    Bischof, H., Pinz, A.: Neural Networks in Image Pyramids. In: International Joint Conference on Neural Networks (IJCNN 1992), vol. 4, pp. 374–379 (1992)Google Scholar
  3. 3.
    Cottrell, G.W., Fleming, M.K.: Face recognition using unsupervised feature extraction. In: Proc. Int. Conf. Neural Network, pp. 322–325 (1990)Google Scholar
  4. 4.
    Beveridge, R., Bolme, D., Teixeira, M., Draper, B.: The CSU Face Identification Evaluation System User’s Guide: Version 5.0. Computer Science Department Colorado State University (2003)Google Scholar
  5. 5.
    Kienzle, W., Bakir, G., Franz, M., Scholkopf, B.: Face Detection - Efficient and Rank Deficient. In: Advances in Neural Information Processing Systems, vol. 17, pp. 673–680 (2005)Google Scholar
  6. 6.
    Ministerio de Educación, Política Social y Deporte Instituto Superior de Formación y Recursos en Red para el Profesorado. Organización para la Cooperación y el Desarrollo Económico,
  7. 7.
    Howell, A.J., Buxton, H.: Invariance in Radial Basis Function Neural Networks in Human Face Classification. Neural Processing Letters 2(3), 26–30 (1996)CrossRefGoogle Scholar
  8. 8.
    Guerrero, J.A.G.: Utilización del análisis de componentes principales para la clasificación de blancos de radar mediante resonancias naturales. Dpto. Fiísica Aplicada, Grupo de sistemas, señales y ondas Universidad de Granada (2006)Google Scholar
  9. 9.
    Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural-network approach. IEEE Transactions on Neural Networks 8(1), 98–113 (1997)CrossRefGoogle Scholar
  10. 10.
    Li, Jain: Handbook Of Face Recognition. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  11. 11.
    Kilner, J.M., Vargas, C., Duval, S., Blakemore, S.-J., Sirigu, A.: Motor activation prior to observation of a predicted movement. Nature Neuroscience 7, 1299–1301 (2004)CrossRefGoogle Scholar
  12. 12.
    Phillips, P.J., Moon, H., Rauss, P.J., Rizvi, S.: The FERET evaluation methodology for face recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)CrossRefGoogle Scholar
  13. 13.
    Scruton, R.: La experiencia esttica. México, F.C.E, pp. 117–119 (1987)Google Scholar
  14. 14.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Aitor Moreno Fdz. de Leceta
    • 1
  • Mariano Rincón
    • 2
  1. 1.Intelligent Systems of Control and Management DepartmentIbermática, Parque Tecnológico de ÁlavaMiñanoSpain
  2. 2.Departamento de Inteligencia Artificial, Escuela Técnica Superior de Ingeniería InformáticaUniversidad Nacional de Educación a DistanciaMadridSpain

Personalised recommendations