Analysis of Brain SPECT Images for the Diagnosis of Alzheimer Disease Using First and Second Order Moments

  • D. Salas-Gonzalez
  • J. M. Górriz
  • J. Ramírez
  • M. López
  • I. Álvarez
  • F. Segovia
  • C. G. Puntonet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5602)

Abstract

This paper presents a computer-aided diagnosis technique for improving the accuracy of the early diagnosis of the Alzheimer type dementia. The proposed methodology is based on the selection of the voxels which present greater overall difference between both modalities (normal and Alzheimer) and also lower dispersion. We measure the dispersion of the intensity values for normals and Alzheimer images by mean of the standard deviation images. The mean value of the intensities of selected voxels is used as feature for different classifiers, including support vector machines with linear kernels, fitting a multivariate normal density to each group and the k-nearest neighbors algorithm. The proposed methodology reaches an accuracy of 92 % in the classification task.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    English, R.J., Childs, J. (eds.): SPECT: Single-Photon Emission Computed Tomography: A Primer. Society of Nuclear Medicine (1996)Google Scholar
  2. 2.
    Hellman, R.S., Tikofsky, R.S., Collier, B.D., Hoffmann, R.G., Palmer, D.W., Glatt, S., Antuono, P.G., Isitman, A.T., Papke, R.A.: Alzheimer disease: quantitative analysis of I-123-iodoamphetamine SPECT brain imaging. Radiology 172, 183–188 (1989)CrossRefGoogle Scholar
  3. 3.
    Holman, B.L., Johnson, K.A., Gerada, B., Carvalho, P.A., Satlin, A.: The scintigraphic appearance of alzheimer’s disease: A prospective study using Technetium-99m-HMPAO SPECT. Journal of Nuclear Medicine 33(2), 181–185 (1992)Google Scholar
  4. 4.
    Johnson, K.A., Kijewski, M.F., Becker, J.A., Garada, B., Satlin, A., Holman, B.L.: Quantitative brain SPECT in Alzheimer’s disease and normal aging. Journal of Nuclear Medicine 34(11), 2044–2048 (1993)Google Scholar
  5. 5.
    Jagust, W., Thisted, R., Devous, M.D., Heertum, R.V., Mayberg, H., Jobst, K., Smith, A.D., Borys, N.: Spect perfusion imaging in the diagnosis of alzheimer’s disease: A clinical-pathologic study. Neurology 56, 950–956 (2001)CrossRefGoogle Scholar
  6. 6.
    McNeill, R., Sare, G.M., Manoharan, M., Testa, H.J., Mann, D.M.A., Neary, D., Snowden, J.S., Varma, A.R.: Accuracy of single-photon emission computed tomography in differentiating frontotemporal dementia from alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 78(4), 350–355 (2007)CrossRefGoogle Scholar
  7. 7.
    Ramírez, J., Górriz, J.M., Romero, A., Lassl, A., Salas-Gonzalez, D., López, M., Gómez-Río, M., Rodríguez, A.: Computer aided diagnosis of alzheimer type dementia combining support vector machines and discriminant set of features. Information Sciences (2008) (accepted)Google Scholar
  8. 8.
    Fung, G., Stoeckel, J.: SVM feature selection for classification of SPECT images of Alzheimer’s disease using spatial information. Knowledge and Information Systems 11(2), 243–258 (2007)CrossRefGoogle Scholar
  9. 9.
    Górriz, J.M., Ramírez, J., Lassl, A., Salas-Gonzalez, D., Lang, E.W., Puntonet, C.G., Álvarez, I., López, M., Gómez-Río, M.: Automatic computer aided diagnosis tool using component-based svm. In: Medical Imaging Conference, Dresden. IEEE, Los Alamitos (2008)Google Scholar
  10. 10.
    Lassl, A., Górriz, J.M., Ramírez, J., Salas-Gonzalez, D., Puntonet, C.G., Lang, E.W.: Clustering approach for the classification of spect images. In: Medical Imaging Conference, Dresden. IEEE, Los Alamitos (2008)Google Scholar
  11. 11.
    Stoeckel, J., Malandain, G., Migneco, O., Koulibaly, P.M., Robert, P., Ayache, N., Darcourt, J.: Classification of SPECT images of normal subjects versus images of Alzheimer’s disease patients. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 666–674. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Krzanowski, W.J. (ed.): Principles of multivariate analysis: a user’s perspective. Oxford University Press, Inc., New York (1988)MATHGoogle Scholar
  13. 13.
    Vapnik, V.: Statistical learning theory. John Wiley and Sons, New York (1998)MATHGoogle Scholar
  14. 14.
    Ramírez, J., Górriz, J.M., Gómez-Río, M., Romero, A., Chaves, R., Lassl, A., Rodríguez, A., Puntonet, C.G., Theis, F., Lang, E.: Effective emission tomography image reconstruction algorithms for spect data. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 741–748. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Salas-Gonzalez, D., Górriz, J.M., Ramírez, J., Lassl, A., Puntonet, C.G.: Improved gauss-newton optimization methods in affine registration of spect brain images. IET Electronics Letters 44(22), 1291–1292 (2008)CrossRefGoogle Scholar
  16. 16.
    Woods, R.P., Grafton, S.T., Holmes, C.J., Cherry, S.R., Mazziotta, J.C.: Automated image registration: I. general methods and intrasubject, intramodality validation. Journal of Computer Assisted Tomography 22(1), 139–152 (1998)CrossRefGoogle Scholar
  17. 17.
    Ashburner, J., Friston, K.J.: Nonlinear spatial normalization using basis functions. Human Brain Mapping 7(4), 254–266 (1999)CrossRefGoogle Scholar
  18. 18.
    Saxena, P., Pavel, D.G., Quintana, J.C., Horwitz, B.: An automatic threshold-based scaling method for enhancing the usefulness of Tc-HMPAO SPECT in the diagnosis of Alzheimer’s disease. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 623–630. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • D. Salas-Gonzalez
    • 1
  • J. M. Górriz
    • 1
  • J. Ramírez
    • 1
  • M. López
    • 1
  • I. Álvarez
    • 1
  • F. Segovia
    • 1
  • C. G. Puntonet
    • 2
  1. 1.Dept. of Signal Theory, Networking and CommunicationsUniversity of GranadaGranadaSpain
  2. 2.Dept. of Computer Architecture and Computer TechnologyUniversity of GranadaGranadaSpain

Personalised recommendations