Measurements over the Aquiles Tendon through Ecographic Images Processing

  • M-Consuelo Bastida-Jumilla
  • Juan Morales-Sánchez
  • Rafael Verdú-Monedero
  • Jorge Larrey-Ruiz
  • José Luis Sancho-Gómez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5602)

Abstract

Boundary detection has a relevant importance in locomotor system ecographies, mainly because some illnesses and injuries can be detected before the first symptoms appear. The images used show a great variety of textures as well as non clear edges. This drawback may result in different contours depending on the person who traces them out and different diagnoses too. This paper presents the results of applying the geodesic active contour and other boundary detection techniques in ecographic images of Aquiles tendon, such as morphological image processing and active contours. Other modifications to this algorithm are introduced, like matched filtering. In order to upgrade the smoothness of the final contour, morphological image processing and polynomial interpolation has been used with great results. Actually, the automatization of boundary detection improves the measurement procedure, obtaining error rates under ±10%.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    González, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  2. 2.
    Liang, J., McInerney, T., Terzopoulosd, D., Liang, J., McInerney, T., Terzopoulos, D.: United snakes. Medical Image Analysis 10, 133–215 (2006)Google Scholar
  3. 3.
    Huete, V.M.: Implementación en Matlab de modelos deformables en el dominio de la frecuencia. Master’s thesis, ETSIT: Escuela Técnica de Ingeniería de Telecomunicación (February 2005)Google Scholar
  4. 4.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)CrossRefMATHGoogle Scholar
  5. 5.
    Payá, J.J.M., Díaz, J.R., del Baño Aledo y otros, M.E.: Estudio de fiabilidad intra e interobservador en la medición del perímetro del tendón de aquiles en un corte ecográfico transversalGoogle Scholar
  6. 6.
    Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. IEEE Transactions On Image Processing 10(10) (October 2001)Google Scholar
  7. 7.
    Southwest Jiaotong University: Texture Image Segmentation Using Without Re-initialization Geodesic Active Contour Model, Chengdu, P.R. China, Southwest Jiaotong University (October 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M-Consuelo Bastida-Jumilla
    • 1
  • Juan Morales-Sánchez
    • 1
  • Rafael Verdú-Monedero
    • 1
  • Jorge Larrey-Ruiz
    • 1
  • José Luis Sancho-Gómez
    • 1
  1. 1.Dpto. Tecnologías de la Información y las ComunicacionesUniversidad Politécnica de CartagenaCartagena (Murcia)Spain

Personalised recommendations