How to Do Recombination in Evolution Strategies: An Empirical Study

  • Juan Chen
  • Michael T. M. Emmerich
  • Rui Li
  • Joost Kok
  • Thomas Bäck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5601)

Abstract

In Evolution Strategies (ES) mutation is often considered to be the main variation operator and there has been relatively few attention on the choice of recombination operators. This study seeks to compare advanced recombination operators for ES, including multi-parent weighted recombination. Both the canonical \((\mu{+\atop,} \lambda)-\)ES with mutative self-adaptation and the CMA-ES are considered. The results achieved on scalable (non-)separable test problem indicate that the right choice of recombination has an considerable impact on the performance of the ES. Moreover, the study will provide empirical evidence that weighted multi-parent recombination is a favorable choice for both ES variants.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, D.V.: Optimal Weighted Recombination. In: Wright, A.H., Vose, M.D., De Jong, K.A., Schmitt, L.M. (eds.) FOGA 2005. LNCS, vol. 3469, pp. 215–237. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bäck, T.: Evolutionary algorithms in theory and practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, New York (1996)MATHGoogle Scholar
  3. 3.
    Beyer, H.-G.: Toward a Theory of Evolution Strategies: On the Benefit of Sex-the (μ/μ,λ)-Theory. Evolutionary Computation 3(1), 81–111 (1995)CrossRefGoogle Scholar
  4. 4.
    Chen, J.: On Recombination in (μ,λ) Evolution Strategies. Technical Report, LIACS, Leiden (2006)Google Scholar
  5. 5.
    Deb, K., Beyer, H.-G.: Self-Adaptive Genetic Algorithms with Simulated Binary Crossover. Evolutionary Computation 9(2), 197–221 (2001)CrossRefGoogle Scholar
  6. 6.
    Hansen, N., Ostermeier, A.: Completely Derandomized Self-Adaptation in Evolution Strategies. Evolutionary Computation 9(2), 159–195 (2001)CrossRefGoogle Scholar
  7. 7.
    Ostermeier, A., Gawelczyk, A., Hansen, N.: A derandomized approach to self adaptation of evolution strategies. Evolutionary Computation 2(4), 369–380 (1995)CrossRefGoogle Scholar
  8. 8.
    Rudolph, G.: Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kovac, Hamburg (1997)MATHGoogle Scholar
  9. 9.
    Schönemann, L., Emmerich, M., Preuss, M.: On the extinction of evolutionary algorithm subpopulations on multimodal landscapes. Informatica (Slovenia) 28(4), 345–351 (2004)Google Scholar
  10. 10.
    Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari, S.: Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. Technical Report AND KanGAL Report 2005005, IIT Kanpur, India (2005)Google Scholar
  11. 11.
    Shang, Y.-W., Qiu, Y.-H.: A Note on the Extended Rosenbrock Function. Evolutionary Computation 14(1), 119–126 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Juan Chen
    • 1
  • Michael T. M. Emmerich
    • 1
  • Rui Li
    • 1
  • Joost Kok
    • 1
  • Thomas Bäck
    • 1
  1. 1.Natural Computing GroupLeiden UniversityLeidenThe Netherlands

Personalised recommendations