Neural Prosthetic Interfaces with the Central Nervous System: Current Status and Future Prospects

  • E. Fernández
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5601)


Rehabilitation of sensory and/or motor functions in patients with neurological diseases is more and more dealing with artificial electrical stimulation and recording from populations of neurons using biocompatible chronic implants. For example deep brain stimulators have been implanted successfully in patients for pain management and for control of motor disorders such as Parkinson’s disease. Moreover advances in artificial limbs and brain-machine interfaces are now providing hope of increased mobility and independence for amputees and paralysed patients. As more and more patients have benefited from these approaches, the interest in neural interfaces has grown significantly. However many problems have to be solved before a neuroprosthesis can be considered a viable clinical therapy or option. We discuss some of the exciting opportunities and challenges that lie in this intersection of neuroscience research, bioengineering and information and communication technologies.


Deep Brain Stimulator Cochlear Implant Microelectrode Array Paralyse Patient Neural Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stieglitz, T., Schuettler, M., Koch, K.P.: Neural prostheses in clinical applications–trends from precision mechanics towards biomedical microsystems in neurological rehabilitation. Biomed. Tech. (Berl) 49(4), 72–77 (2004)CrossRefGoogle Scholar
  2. 2.
    Fernandez, E., et al.: Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity. J. Neural Eng. 2(4), R1–R12 (2005)CrossRefGoogle Scholar
  3. 3.
    Wolpaw, J.R., et al.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)CrossRefGoogle Scholar
  4. 4.
    Hochberg, L.R., et al.: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099), 164–171 (2006)CrossRefGoogle Scholar
  5. 5.
    Loeb, G.E.: Neural prosthetic interfaces with the nervous system. Trends Neurosci. 12(5), 195–201 (1989)CrossRefGoogle Scholar
  6. 6.
    Sanguineti, V., et al.: Neuro-Engineering: from neural interfaces to biological computers. In: Riva, R., Davide, F. (eds.) Communications Through Virtual Technology: Identity Community and Technology in the Internet Age, pp. 233–246. IOS Press, Amsterdam (2001)Google Scholar
  7. 7.
    Fernandez, E., et al.: Population coding in spike trains of simultaneously recorded retinal ganglion cells. Brain Res. 887(1), 222–229 (2000)CrossRefGoogle Scholar
  8. 8.
    Nicolelis, M.A., Ribeiro, S.: Multielectrode recordings: the next steps. Curr. Opin. Neurobiol. 12(5), 602–606 (2002)CrossRefGoogle Scholar
  9. 9.
    Nicolelis, M.A.: Brain-machine interfaces to restore motor function and probe neural circuits. Nat. Rev. Neurosci. 4(5), 417–422 (2003)CrossRefGoogle Scholar
  10. 10.
    Normann, R.A., et al.: A neural interface for a cortical vision prosthesis. Vision Res. 39(15), 2577–2587 (1999)CrossRefGoogle Scholar
  11. 11.
    Carmena, J.M., et al.: Stable ensemble performance with single-neuron variability during reaching movements in primates. J. Neurosci. 25(46), 10712–10716 (2005)CrossRefGoogle Scholar
  12. 12.
    Nicolelis, M.A.: Computing with thalamocortical ensembles during different behavioural states. J. Physiol. 566(Pt 1), 37–47 (2005)CrossRefGoogle Scholar
  13. 13.
    Musallam, S., et al.: A floating metal microelectrode array for chronic implantation. J. Neurosci. Methods 160(1), 122–127 (2007)CrossRefGoogle Scholar
  14. 14.
    Normann, R.A.: Technology insight: future neuroprosthetic therapies for disorders of the nervous system. Nat. Clin. Pract. Neurol. 3(8), 444–452 (2007)CrossRefGoogle Scholar
  15. 15.
    Seymour, J.P., Kipke, D.R.: Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 28(25), 3594–3607 (2007)CrossRefGoogle Scholar
  16. 16.
    McCreery, D., Agnew, W.F., Bullara, L.: The effects of prolonged intracortical microstimulation on the excitability of pyramidal tract neurons in the cat. Ann. Biomed. Eng. 30, 107–119 (2002)CrossRefGoogle Scholar
  17. 17.
    Heiduschka, P., Thanos, S.: Implantable bioelectronic interfaces for lost nerve functions. Prog. Neurobiol. 55, 433–461 (1998)CrossRefGoogle Scholar
  18. 18.
    Williams, D.F.: On the mechanisms of biocompatibility. Biomaterials 29(20), 2941–2953 (2008)CrossRefGoogle Scholar
  19. 19.
    Williams, D.: Revisiting the definition of biocompatibility. Med. Device Technol. 14(8), 10–13 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • E. Fernández
    • 1
  1. 1.Bioingineering InstituteUniversidad Miguel Hernández, Alicante CIBER-BBN (Bioengineering, Biomaterials and Nanomedicine)Spain

Personalised recommendations