Advertisement

Observational Completeness on Abstract Interpretation

  • Gianluca Amato
  • Francesca Scozzari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5514)

Abstract

In the theory of abstract interpretation, we introduce the observational completeness, which extends the common notion of completeness. A domain is complete when abstract computations are as precise as concrete computations. A domain is observationally complete for an observable π when abstract computations are as precise as concrete computations, if we only look at properties in π. We prove that continuity of state-transition functions ensures the existence of the least observationally complete domain. When state-transition functions are additive, the least observationally complete domain boils down to the complete shell.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birkhoff, G.: Lattice Theory, 3rd edn., vol. XXV. AMS Colloquium Publications, American Mathematical Society (1967)Google Scholar
  2. 2.
    Cousot, P.: Types as abstract interpretations, invited paper. In: POPL 1997: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 316–331. ACM Press, New York (1997)Google Scholar
  3. 3.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL 1977: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pp. 238–252. ACM Press, New York (1977)Google Scholar
  4. 4.
    Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: POPL 1979: Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pp. 269–282. ACM Press, New York (1979)Google Scholar
  5. 5.
    Cousot, P., Cousot, R.: Temporal abstract interpretation. In: POPL 2000: Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 12–25. ACM Press, New York (2000)Google Scholar
  6. 6.
    Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems. ACM Transactions on Programming Languages and Systems 19(2), 253–291 (1997)CrossRefGoogle Scholar
  7. 7.
    Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples, and refinements in abstract model-checking. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 356–373. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations complete. Journal of the ACM 47(2), 361–416 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Schmidt, D.A.: Comparing completeness properties of static analyses and their logics. In: Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 183–199. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gianluca Amato
    • 1
  • Francesca Scozzari
    • 1
  1. 1.Dipartimento di ScienzeUniversità di Chieti-PescaraItaly

Personalised recommendations