A Duality for Algebras of Lattice-Valued Modal Logic

  • Yoshihiro Maruyama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5514)


In this paper, we consider some versions of Fitting’s L-valued logic and L-valued modal logic for a finite distributive lattice L. Using the theory of natural dualities, we first obtain a natural duality for algebras of L-valued logic (i.e., L -VL-algebras), which extends Stone duality for Boolean algebras to the L-valued case. Then, based on this duality, we develop a Jónsson-Tarski-style duality for algebras of L-valued modal logic (i.e., L -ML-algebras), which extends Jónsson-Tarski duality for modal algebras to the L-valued case. By applying these dualities, we obtain compactness theorems for L-valued logic and for L-valued modal logic, and the classification of equivalence classes of categories of L -VL-algebras for finite distributive lattices L.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky, S.: Domain theory in logical form. Ann. Pure Appl. Logic 51, 1–77 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Awodey, S.: Category theory. OUP (2006)Google Scholar
  3. 3.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. CUP (2001)Google Scholar
  4. 4.
    Bonsangue, M.M.: Topological duality in semantics. Electr. Notes Theor. Comput. Sci. 8 (1998)Google Scholar
  5. 5.
    Brink, C., Rewitzky, I.M.: A paradigm for program semantics: power structures and duality. CSLI Publications, Stanford (2001)Google Scholar
  6. 6.
    Burris, S., Sankappanavar, H.P.: A course in universal algebra. Springer, Heidelberg (1981)CrossRefzbMATHGoogle Scholar
  7. 7.
    Clark, D.M., Davey, B.A.: Natural dualities for the working algebraist. CUP (1998)Google Scholar
  8. 8.
    Connes, A.: Noncommutative geometry. Academic Press, London (1994)zbMATHGoogle Scholar
  9. 9.
    Chagrov, A., Zakharyaschev, M.: Modal logic. OUP (1997)Google Scholar
  10. 10.
    Doran, R.S., Belfi, V.A.: Characterizations of C*-algebras; The Gelfand-Naimark theorems. Marcel Dekker Inc., New York (1986)zbMATHGoogle Scholar
  11. 11.
    Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique: I. Le langage des schémas. Publications Mathématiques de l’IHÉS 4, 225–228 (1960)Google Scholar
  12. 12.
    Hansoul, G.: A duality for Boolean algebras with operators. Algebra Universalis 17, 34–49 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Eleftheriou, P.E., Koutras, C.D.: Frame constructions, truth invariance and validity preservation in many-valued modal logic. J. Appl. Non-Classical Logics 15, 367–388 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gehrke, M., Harding, J.: Bounded lattice expansions. J. Algebra 239, 345–371 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gehrke, M., Nagahashi, H., Venema, Y.: A Sahlqvist theorem for distributive modal logic. Ann. Pure Appl. Logic 131, 65–102 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fitting, M.C.: Many-valued modal logics. Fund. Inform. 15, 235–254 (1991)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Fitting, M.C.: Many-valued modal logics II. Fund. Inform. 17, 55–73 (1992)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Fitting, M.C.: Many-valued non-monotonic modal logics. In: Nerode, A., Taitslin, M.A. (eds.) LFCS 1992. LNCS, vol. 620, pp. 139–150. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  19. 19.
    Fitting, M.C.: Tableaus for many-valued modal logic. Studia Logica 55, 63–87 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Koutras, C.D., Zachos, S.: Many-valued reflexive autoepistemic logic. Logic Journal of the IGPL 8, 33–54 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Koutras, C.D., Peppas, P.: Weaker axioms, more ranges. Fund. Inform. 51, 297–310 (2002)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Koutras, C.D.: A catalog of weak many-valued modal axioms and their corresponding frame classes. J. Appl. Non-Classical Logics 13, 47–72 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Maruyama, Y.: Algebraic study of lattice-valued logic and lattice-valued modal logic. In: Ramanujam, R., Sarukkai, S. (eds.) ICLA 2009. LNCS (LNAI), vol. 5378, pp. 172–186. Springer, Heidelberg (2009)Google Scholar
  24. 24.
    Maruyama, Y.: The logic of common belief, revisited (in preparation)Google Scholar
  25. 25.
    Stone, M.H.: The representation of Boolean algebras. Bull. Amer. Math. Soc. 44, 807–816 (1938)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Straßburger, L.: What is a logic, and what is a proof? Logica Universalis 2nd edn., 135–152 (2007)Google Scholar
  27. 27.
    Teheux, B.: A duality for the algebras of a Łukasiewicz n + 1-valued modal system. Studia Logica 87, 13–36 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yoshihiro Maruyama
    • 1
  1. 1.Department of Humanistic Informatics, Graduate School of LettersKyoto UniversityJapan

Personalised recommendations